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Abstract 

 

Arsonoacetic acid, H2O3AsICH2COOH (1), and arsenoacetic acid, punitively 

[AsVCH2COOH]2 (2) have been synthesised according to historical literature 

methods, and have been characterised using modern techniques. 

 

 

Arsonoacetic acid was shown by an X-ray crystal structure analysis to be a 

molecular species with an extensive hydrogen bonding network in the 

crystal. 

Arsenoacetic acid proved to be more enigmatic. Electrospray mass spectra 

suggested it consisted of a mixtures of rings (RAs)n, n = 3-11, with n = 6 

dominating. This was partly confirmed by a crystal structure of 

(AsCH2COOH)6 (3) (as the pyridine solvate). On the other hand, 1H and 13C 

NMR gave spectra that indicated only a single component for arsenoacetic 

acid. 

 

The formation of crystals of the high temperature phase of elemental sulfur, 

β-S8, at ambient temperature is also discussed. 
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1. Introduction 

 

The history of arsenic is colourful, and its uses have varied from chemical 

weapons, to beauty products. A recent review of the diverse nature of 

arsenic, and the role it has played in many aspects of society has been written 

by Cullen,1 and has been a basis for much of the introduction of this thesis. 

1.1 Medicinal arsenic 

Arsenic has been widely used therapeutically for the better part of the last 

2400 years despite its high toxicity.2, 3 One of the first recorded uses of 

arsenic medicinally goes as far back as 400 BC when Hippocrates (460 - 370 

BC) used the arsenic containing minerals, orpiment (As2S3) and realgar 

(As2S2), to treat tumours and cancerous ulcers. Reference to these same 

minerals was also found in ancient Chinese and Indian medicinal texts, dating 

back to 200 BC.4-6 Even though the use of these minerals were documented 

across the globe, arsenic itself had not yet been isolated or identified. It 

appears the first person to isolate arsenic, although disputed, was Saint 

Albert the Great (Albert Magnus) in 1205 AD.5, 7  

By the 18th century, people had been convinced that arsenic, although highly 

toxic, could be used therapeutically when the dosage was right, leading to the 

prescription of arsenic based drugs to cure a wide range of ailments. 

Paracelsus (1493 – 1541), an alchemist and physician, is quoted, “All 

substances are poisons; there is none which is not a poison. The right dose 

differentiates a poison and a remedy.”8 Fowler’s solution, a 1% solution of 

potassium arsenite, was a tonic readily prescribed for over 150 years as a 

cure for asthma, eczema, Hodgkin’s disease, anaemia, rheumatism and 

psoriasis, apparently with much success.3, 9 Patients would take 12 drops, 

three times daily over a period of eight days, the equivalent of taking 0.112 g 

of As2O3.10 
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Figure 1.1  - Structure of Melarsaprol (Mel B), used to treat African sleeping 
sickenss 

Sleeping sickness is a disease that still runs rampant throughout Africa 

causing fever, headaches, and joint pains in the early stages, and then 

anaemia, heart and kidney disease, and if left untreated, irreversible 

neurological damage, and finally death.4 An arsenic based compound 

Melarsaprol, sold under the name Mel B (Figure 1.1), is still currently used as 

it is one of the cheapest cures. The alternative drug, Eflonithine doesn’t 

contain arsenic, and is deemed to be much safer, however a typical dose costs 

US$210 per course, compared to US$50 for Melarsoprol.1 

The use of arsenicals in the medical field has been revived in more recent 

years with the discovery that arsenic trioxide (As2O3) shows signs of being 

able to cure acute promyelocytic leukemia (APL), a rare and fatal form of 

cancer that affects mostly young people, averaging two in every million.11 

Trials were started in the United States12 in 1996 after learning of results 

published by Chinese researchers. They reported their success with this 

‘new’ treatment on 16 patients that had not responded to other anticancer 

treatments.13 Solubilised As2O3 was administered intravenously at a rate of 

10 mg day-1 for 45 days, at which time bone marrow remission was attained 

in two thirds of the patients.13  

The rediscovery of As2O3 has led to many medical trials being undertaken. 

Many cancers such as liver, pancreatic, gastric, ovarian, cervical, prostate, 

renal, bladder, breast and lung cancer have had some form of trials with 

As2O3, the results however are varied.14 

Paradoxically, this once ancient treatment, given out as a magical cure for 

many ailments, is now sold as an expensive, ‘pharmaceutically acceptable’ 

(soluble) patented15 drug, going by the name Trisenox.16  
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1.1.1 Salvarsan 

Salvarsan, also known as arsphenamine or simply 606, was the 606th 

compound to be tested for biological activity by Ehrlich’s group against 

Trepenoma pallidum, the spirochete bacterium responsible for causing 

syphilis.4 Ehrlich was in search of a ‘magic bullet’, a one shot cure, and 

Salvarsan seemed to be just that for syphilis.1 A more soluble derivate of 

Salvarsan, Neosalvarsan was the drug of choice to cure syphilis right up until 

the widespread use of penicillin. 

 

Figure 1.2 – (a) Ehrlich’s proposed structure of Salvarsan, (b) main 
constituents of Salvarsan as published by Lloyd et al.17 

Ehrlich had assigned Salvarsan a diarsene type structure, shown in Figure 

1.2a, but recently the actual structure has been under scrutiny.18, 19 We now 

know that As=As double bonds are only formed when the substituents are 

bulky.20 Steric crowding makes the formation of a ring unfavourable. The 

3-H2N-4-HOC6H3 substituent is not particularly bulky however, and so the 

formation of a cyclic structure is likely. Lloyd et al. reported the first 

definitive evidence that Salvarsan formed cyclic structures.17 The evidence 

was high resolution mass spectral data showing a series of ions assigned to 

cyclic structures of the form [(RAs)n + H]+ for n = 3-8.17 It appears that a 

solution of Salvarsan actually contains multiple (RAs)n compounds, 

predominantly n = 3 and 5 (Figure 1.2b). 
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1.1.2 The arsenic eaters of Styria 

A group of people in an Styria, Austria, took to the idea of arsenic’s medicinal 

properties a little more than most would have deemed beneficial. In the 

1800’s, rumours extended to the United Kingdom of a group of people that 

consumed potentially fatal doses of white arsenic (As2O3) or realgar (As2S2) 

every 2-3 days over periods of 30 or more years.1 The usual amount of 

arsenic consumed was 300-400 mg each time, well above the medically 

acknowledged lethal dosage of 70-180 mg As2O3.10 Although they appear to 

have rather deadly eating habits, they apparently lived long, healthy lives.  

The men who ate the arsenic claimed it helped them to breathe easier while 

hiking at higher altitudes, as well as increasing their courage and sexual 

potency.10 The women took arsenic to improve their complexion by making 

their cheeks red, and make them plump, which was a favourable feminine 

trait at the time.10 The reddening of the cheeks was a result of arsenic 

damaging the delicate blood vessels near the surface of the skin.5 The group 

as a whole also commented on its ability to aid in the digestion of heavy 

meals, and ward off infectious diseases.10 

The arsenic was typically eaten sprinkled over bread with bacon. The fat in 

the bacon apparently reduced the absorption of the arsenic. When someone 

first started taking arsenic, the dosage started at about 10 mg, and was slowly 

increased up to the maximum dosage of 300-400 mg over a period of weeks, 

at which the dosage was then sustained.1 

There was initially much doubt that a group of peasants from Styria could 

manage to find a safe dosage of arsenic that appeared to be effective, when 

leading practitioners around the world had been trying to do the same thing 

with little success.10 To dispel all doubt, two arsenic eaters were invited to a 

conference in Graz, Austria where one consumed 400 mg As2O3 and the other 

300 mg orpiment (As2S2) in front of the audience.10 The urine was then 

analysed and clearly showed the presence of significant levels of arsenic.10 

The downside of taking such large amounts of arsenic, is that it interferes 

with iodine in the body. Iodine is an important trace element required by the 
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thyroid, which is responsible for controlling many important metabolic 

processes.5 Goitre, caused by an iodine deficiency, was a prevalent disease 

amongst the arsenic eaters, and because of this it wasn’t uncommon for 

children to have stunted physical and mental growth.5  

1.2 The toxicity of arsenic 

Even in light of all the medicinal benefits that arsenic has been shown to be 

capable of, the first thing that comes to mind of most when the word arsenic 

is said, is the idea of poison. The toxicity of arsenic is dependant on its form, 

primarily the oxidation state. Trivalent arsenicals are generally more toxic 

that their pentavalent counterparts. 

 

Figure 1.3 – Arsenic and arsenous acid and their methylated derivatives 

The unpleasant nature of arsenic can wreak havoc on the human body. Acute 

poisoning can show symptoms such as abdominal pain, nausea, severe 

diarrhoea, and vomiting, or in more serious cases, damage to the peripheral 

nervous system and brain.21 The controlled treatment for acute arsenic 

poisoning is not clearly documented by today’s medical standards, and 

effective chelation drugs are not always available in emergency 

departments.22 A report was published whereby two patients were 

successfully treated for arsenic overdoses by chelation therapy using 

dimercaptosuccinic acid (DMSA).22 DMSA is a more water-soluble derivative 
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of British Anti-Lewisite (dimercaprol), which was developed during World 

War II as an antidote to the arsenic chemical weapon Lewisite.1 

Chronic arsenic exposure via inhalation or ingestion have been studied 

extensively and clearly show the increased risk of respiratory cancer.23 Other 

effects seen have been skin cancers, damage to the peripheral nervous 

system, anaemia, and damage to the blood vessels.23 

One of the widely known cases of acute mass arsenic exposure occurred in 

1900 in England. Doctors saw a large increase in patients that showed 

peripheral neuritis (damage of the peripheral nervous system). The patients 

were typically working class beer drinkers, and so the symptoms were 

written off as results of alcoholism.1 Questions started being asked when 

women and their breastfed children also suffered similar symptoms. There 

were approximately 6000 people affected by this new outbreak and at least 

70 fatalities.22 The cause and source of the symptoms were traced back to the 

sugars used in the beer brewing process. The sulfuric acid used to convert 

cane sugar into the glucose/fructose mixture required for brewing contained 

up to 1.5% arsenic, which was then carried on into the brewing process, 

resulting in the contamination of the beer.1 Needless to say, the suppliers of 

the brewing sugars had to discard their contaminated stock, totalling around 

700 tons, forcing them into liquidation.1 

The exact mechanism of arsenic’s toxicity is not known for sure but there are 

many hypotheses about possible actions. Firstly it is dependant upon which 

oxidation state the arsenic is in. The trivalent arsenic compounds, both 

inorganic and methylated, are thought to bind to thiol groups in proteins, 

inhibiting or completely halting their activity.24 Pentavalent arsenic 

compounds are thought to replace phosphate in important biochemical 

processes because of their chemical similarities.24 One of these processes is 

the conversion of ATP, to ADP a process that releases the energy stored in the 

cells, required the metabolism to function.24 The arsenic analogues formed 

when replacing phosphorus are unstable, and hydrolysed in the body, 
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breaking down the conversion process, essentially starving the cells of 

energy.24 

1.3 Uses of arsenic 

The use of arsenic based compounds are still common throughout the 

chicken breeding industry. The main compound used is 3-nitro-4-hydroxy 

phenyl arsonic acid, also called Roxarsone. It is used as a feed additive at 

about 50 ppm to prevent parasites in the intestinal tracts of chickens and 

promote growth.25, 26 An improvement in tissue pigmentation is also seen, 

which can be likened to the Victorian women who took arsenic trioxide to 

obtain a pale complexion.25 Although Roxarsone has been shown to increase 

the weight of chickens by 4.1 %, the majority of the aresenic passes straight 

through the chickens and into the bedding material, typically corn husks and 

wood chips.1 The bedding is usually disposed of by spreading it over fields, 

the arsenic present in the bedding however, eventually ends up in the soil 

creating the potential for harmful levels of arsenic if the same land is being 

used for prolonged periods of time.1 

Chromated copper arsenate (CCA) is the most common treatment to preserve 

timber and is applied using vacuum pressure impregnation.1, 27  

In the recent race to create high temperature superconductors, arsenic 

appears to be one of the elements of choice to obtain the required properties. 

High temperature superconductors are materials that exert no electrical 

resistance at temperatures higher than 30 K. A new generation of 

superconductors have been published one after the other slowly raising the 

bar. (LaO1-xFxFeAs) becomes a superconductor at 26 K, closely followed by 

(SmO1-xFxFeAs) at 43 K, and (PrO1-xFxFeAs) at 52 K.28 The compounds are 

particularly unusual as they contain iron, which is magnetic, and previously 

magnetism and superconductivity were thought not to mix.28  

While historically well studied and interesting, there are still areas that can 

usefully be re-investigated using modern analytical techniques. 
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1.4 Preparations of arsonic acids and arseno compounds 

The two major compounds discussed in this thesis are arsonoacetic acid, 

H2O3AsVCH2COOH and arsenoacetic acid, nominally (AsICH2COOH)2; the 

traditional preparations of these two classes of compounds are outlined 

below. 

1.4.1 Arsonic acids 

Arsonic acids are of the form H2O3AsR and can be prepared in many ways; 

the three most common methods are described below. 

The Bart reaction forms arsonic acids by reacting aromatic diazo compounds 

with sodium arsenite (Na3AsO3) under alkaline conditions.29  

PhN2
�Cl‐ � Na3AsO3

          
���  PhAsO�ONa�2� NaCl � N2 

This reaction was patented in 1910.30 Although the reaction must be carried 

out under alkaline conditions, the pH must be controlled as the reaction 

relies on the evolution of nitrogen, which does not occur at high pHs. 

Typically sodium carbonate is used as a buffer and can significantly increase 

yields.31 

Aromatic amines, phenols, and phenyl ethers can be arsonated by the 

Béchamp reaction.29  

PhNH2� H2AsO4 
          
���  NH2PhAsO�OH2� � H2O  

Ehrlich used this reaction early on in his organic arsenic research to study 

arsanilic acid. Amines undergoing the Béchamp reaction generally give poor 

yields (< 25%) however, the reaction is still useful as it works with both 

electron repelling and attracting substituents in the ring.29 

The most widely used preparation for alkylarsonic acids is the Meyer 

reaction.32 It follows the general scheme: 

RX � As2O3 
  OH‐  

����  RAsO�OH�2 �  X‐ 
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The reaction proceeds most rapidly with alkyl iodides, however bromides 

and chlorides are also used successfully.29 Primary halides react readily, 

secondary halides only slowly, usually with some difficulty, and tertiary 

halides do not react at all.33 The Meyer reaction has been adapted to work 

with aromatic halides, although not as readily; this is known as the 

Rosenmund reaction.34 

1.4.2 Arseno compounds 

The exact structures of arseno compounds have been a topic of hot debate. 

Early on they were typically assigned diarsene (RAs=AsR) strucutures. There 

were also suggestions that the actual structures should have been 

polymeric35 or cyclic36.  

The most common method for the synthesis of arseno compounds is by the 

reduction of arsonic acids (RAsO(OH)2), arsenoso compounds ((RAsO)x), 

arsonous acids (RAs(OH)2), or dihaloarsines (RAsX2). The best reducing 

agents are either phosphorous acid or hypophosphorous acid.29 

Arseno compounds can also be obtained via the oxidation of primary 

aromatic arsines. The arsines however, are not air stable, and difficult to 

prepare, limiting the use of this method.29 

1.5 Usage and history of arsono- and arsenoacetic acid 

1.5.1 Arsonoacetic acid 

The first publication of arsonoacetic acid was by Palmer in 1923.37 

The disodium salt has been used to treat anaplasmosis (a parasitic disease), 

and as a stimulant in nervous diseases in cats.38 

Arsonoacetic acid has not featured much in human medicine, a Chinese 

patent however, was filed in 2003 for arsonoacetic acid and its methyl or 

ethyl derivatives as chemotherapeutic drugs again liver cancer.39 
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1.5.2 Arsenoacetic acid 

Arsenoacetic acid is synthesised by reducing arsonoacetic acid in an aqueous 

H2SO4 solution. The first synthesis was published in 1923 in the same 

publication as arsonoacetic acid.37, 40 A patent for the synthesis of many 

aliphatic arseno compounds, including arsenoacetic acid was issued in 

1931.41 

Although the aliphatic arseno compounds generally show lower biological 

activity than their aromatic counterparts, arsenoacetic acid has been used in 

many applications, both medical and otherwise, since its discovery. A patent 

was issued in 1970 detailing its use to treat timber as a fire retardant.42 In 

2004, another patent for this very same compound was issued, this time not 

for treating timber, but rather treating premenstrual syndrome.43 In the 

equine world, there appears to be an emerging problem of chronic fatigue 

syndrome, luckily arsenoacetic acid has been tested and shown to be an 

effective treatment.44 

The originally proposed structure of arsenoacetic acid is shown in Figure 1.4. 

 

Figure 1.4 – Palmer’s proposed structure of arsenoacetic acid 

At the time, this structure would have satisfied all the functional group tests 

and elemental analyses, and even today in well-respected literature, such as 

the Merck Index,38 this is how arsenoacetic acid is depicted. In light of the 

work done by Lloyd et al.17 on Salvarsan, it was likely that this compound 

formed cyclic arseno structures of the form (RAs)n, rather than the 

unfavourable As=As bond. Using the arsenal of analytical techniques not 

available back in the 1920’s such as mass spectrometry, NMR, and X-ray 

crystallography, the exact structure of arsenoacetic acid has been uncovered 

and will be discussed later on in this thesis.  
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1.6 X-ray crystallography 

Crystal structures of cyclic arseno compounds of various sizes have been 

published showing 345, 446, 47, 548-50 and 651-53 membered rings. The majority 

contain aromatic substituents as they have proven to be more medicinally 

significant, easier to synthesise, more stable and crystallise more readily. The 

first published cycloarsenic crystal structure was of arsenomethane, dating 

back to 1957.48 The crystal structure of arsenomethane revealed a puckered 

arsenic ring in a chair conformation with As-As-As angles of approximately 

90° and As-As bond lengths averaging 4.1 Å. All cycloarsenic structures to 

date have formed highly puckered rings in chair conformations with angles 

near 90°. The average bond lengths seen in higher quality crystal structures 

of 2.459 Å is much shorter to that measured in arsenomethane.52 

X-ray crystallography is one of the few definitive methods for determining 

the exact structure of these cycloarsenic structures, and has proven 

invaluable in this study. 
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2. Experimental 

2.1 General 

All water was deionised, and commercial drum grade organic solvents were 

used without further purification, unless otherwise noted. 

2.2 Instrumental techniques 

2.2.1 EDX spectroscopy 

EDX spectroscopy was carried out on a Hitachi S-4700 field energizing 

scanning electron microscope (SEM), conducted at 20 kV with a 30° takeoff 

angle. 

2.2.2 FT-IR spectroscopy 

All samples were dried overnight in vacuo over silica before being run as KBr 

disks on a PerkinElmer Spectrum 100 FT-IR spectrometer. Data was 

processed using the PerkinElmer Spectrum software. 

2.2.3 GC-MS 

Samples were run on a HP6890 Series GC system with a non-polar ZB-5 

column (30 m × 0.25 mm, 5% phenyl 95% dimethylpolysiloxane, 25 µm film 

thickness) connected to a HP 5973 Mass Selective Detector (TIC, mass 

scanned: 42 – 650 m/z) using an ESI ionisation source. 

1 µL was injected onto the column at 60 °C, held for 0.5 min, increased to 150 

°C at 30 °C min-1, and then up to 285 °C at 10 °C min-1 where the temperature 

was held for 15 min. Helium carrier gas flow rate was 2 mL min-1, 20 psi. 

2.2.4 High-resolution mass spectrometry 

All spectra were obtained on a Bruker MicrOTOF mass spectrometer, with an 

ESI source and TOF detector using default settings in negative ion mode. The 
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mass spectrometer was calibrated prior to each use with a sodium formate 

solution. 

2.2.5 HPLC 

Samples were loaded via a Rheodyne 7725i injector with a 2 mL loop and 

eluted at 1 mL min-1 through a Hamilton PRP-X100 anion exchange column. A 

5:95 acetonitrile:water eluent (degassed prior to used by sonication), 

containing either 50 mmol sodium hydroxide, 40 or 100 mmol pyridine, was 

run isocratically by a Waters 515 HPLC pump. UV detection was by a Waters 

996 PDA detector (190 – 400 nm) and data processed using Empower Pro 

software. 

2.2.6 NMR spectroscopy 

1H and 13C{1H} NMR experiments were run on a 300 or 400 MHz Bruker 

Avance series machine at ambient temperature (303 K). Samples were run in 

5 mm tubes and, unless otherwise noted, used D2O as the lock solvent. 1H 

spectra were calibrated to the HOD peak occurring at 4.79 ppm,54 13C spectra 

were left unchanged as there were no solvent peaks. 

When run in pyridine-d5, 1H spectra were calibrated to the most downfield 

solvent peak at 8.74 ppm, and 13C to 150.3 ppm. 

Where required, resolution enhancement was used by applying line 

broadening (LB) and Gaussian broadening (GB) parameters of -2.5 and 0.33 

respectively. Linear prediction was also used. Spectra were then processed 

using these values. 

 

2.3 Synthesis of barium arsonoacetic acid – (BaO3AsCH2COO)2Ba 

Barium arsonoacetic acid was prepared based on the synthesis by Palmer.40 

Arsenic trioxide (10 g, 51 mmol) was added to a hot alkaline solution (10 g 

NaOH, 0.4 mol, 30 mL H2O) and cooled to room temperature. Chloroacetic 
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acid (4.8 g, 51 mmol) was added and stirred for one hour. The clear solution 

was acidified with glacial acetic acid (16 mL) and after cooling to 40 °C, the 

precipitated excess arsenic trioxide was filtered off by suction and washed 

with water. The filtrate was poured into a hot barium chloride solution 

(18.5 g BaCl2.2H2O, 76 mmol, 60 mL H2O) and stirred for five minutes. 

Barium arsonoacetic acid was filtered by suction after the solution was 

allowed to stand overnight, and washed thoroughly with water (30 g, 75%). 

IR: υ(C=O) 1635 (s) cm-1 

EDX: 3:2 Ba:As (molar ratio) 

2.4 Synthesis of sodium arsonoacetic acid – 

Na2O3AsCH2COONa.H2O 

Barium arsonoacetic acid (22 g, 28 mmol) was added to a hot solution of 

anhydrous sodium sulfate (10.7 g, 75 mmol, 50 mL H2O) and stirred for one 

hour at room temperature. Barium sulfate was filtered and the filtrate 

concentrated using a rotary evaporator and recrystallised from water as the 

monohydrate (12.95 g, 85%). 

1H NMR: [D2O] δ 3.16 (s, CH2) ppm 

13C{1H} NMR: [D2O] δ 42.6 (s, CH2), 172.6 (s, COO-) ppm 

IR: υ(C=O) 1620 (s) cm-1 

HRMS: [H2O] See Table 2.1 
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Table 2.1 - HRMS data for sodium arsonoacetic acid, where R = CH2COO- 

Ion Intensity (%) Measured m/z Calculated m/z Δ m/z 

[(H2O3AsR)2+Na]- 2.7 388.853 388.845 0.008 

[(H2O3AsR)2+H]- 3.6 363.868 366.863 0.005 

unknown 7.8 313.267   

[C2As2H7O5]- 12.8 260.878 260.873 0.005 

[HNaO3AsR]- 7.3 204.915 204.909 0.006 

[H2O3AsR]- 34.4 182.932 182.927 0.005 

unknown 6.9 157.127   

[H2O3AsCH2]- 100 138.943 138.938 0.005 

unknown 8.6 123.919   

unknown 13.8 120.932   

 

2.5 Synthesis of arsonoacetic acid – H2O3AsCH2COOH 

As described by Palmer37; barium arsonoacetic acid (5.4 g, 7 mmol) was 

stirred in H2SO4 solution (1.2 mL H2SO4, 24 mL H2O) for five hours and 

precipitated barium sulfate was filtered by suction. Solvent was removed in 

vacuo over conc. H2SO4 until crystallisation commenced. The free acid was 

extracted into absolute ethanol (6 mL) and remaining inorganic material 

filtered. Petroleum spirits (6 mL) was added, and dried over concentrated 

H2SO4 in vacuo until crystallisation commenced. Although a little unusual, the 

method was followed as written. The final product was washed with 

petroleum spirits (1.54 g, 60%). 

Higher yields of much higher purity were obtained following a method 

described by Rozovskaya et al.55 and Sparkes & Dixon56. Barium arsonoacetic 

acid (1.3 g, 5.04 mmol) was stirred for 30 minutes with a sulfonated 

polystyrene resin (Amberlite® IR-120, 10 mL wet volume) in its H+ form, 

which can then be regenerated by stirring with 5% HCl. The solution was 

filtered and water removed using a rotary evaporator leaving a white 

powder, pure by microanalysis (0.50 g, 80%). 

Found: C, 13.27; H, 2.78%; H2O3AsCH2COOH requires: C, 13.06; H, 2.74% 
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1H NMR: [D2O] δ 3.73 (s, CH2) ppm 

13C{1H} NMR: [D2O] δ 39.3 (s, CH2), 168.0 (s, COO-) ppm 

IR: υ(C=O) 1683 (s) cm-1 

HRMS: [H2O] See Table 2.2 

Table 2.2 - HRMS data for arsonoacetic acid – H2O3AsCH2COOH 

Ion Intensity (%) Measured m/z Calculated m/z Δ m/z 

[3M-H]- 15.6 550.804 550.798 0.006 

[3M-H2O-H]- 16.4 532.793 532.787 0.006 

[2M-H]- 52.4 366.867 366.863 0.004 

[2M-H2O-H]- 28.8 348.856 348.852 0.004 

[C2As2H7O5]- 8.5 260.875 260.873 0.002 

[M-H]- 100 182.929 182.927 0.002 

[M-COOH]- 30.3 138.940 138.938 0.002 

2.6 X-ray crystal structure of arsonoacetic acid – H2O3AsCH2COOH 

Colourless block crystals of X-ray quality were grown by slow evaporation of 

a saturated aqueous solution of arsonoacetic acid at room temperature. 

Data collection: Unit cell and intensity data were collected at the University of 

Canterbury on a Bruker Apex-II CCD Diffractometer, operating at 93 K. 

Absorption corrections were applied using semi-empirical methods 

(SADABS).57 

Solution and Refinement: All non-hydrogen atoms were found by direct 

methods option and subsequent difference maps. Hydrogen atoms were 

placed in calculated positions with the hydroxyl torsion angles calculated 

from electron density. All non-hydrogen atoms were refined anisotropically. 

Calculations were performed with SHELX9758 programs and CIF validation 

was carried out using Platon.59  

Collection data: Crystal size: 0.40 × 0.56 × 0.60 mm, temperature: 93 K, 

total reflections: 13348, unique reflections: 1764 (Rint 

0.0548), range: 3.27° < θ < 32.61°, semi-empirical 

absorption correction Tmax,min: 0.7464, 0.3155. 
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Crystal data: C2H5O5As, Mr 183.98, orthorhombic, space group 

P212121, a = 6.0904(3), b = 7.7557(4), c = 10.4713(5) Å, 

volume = 494.62(4) Å3, Dcalc = 2.47 g cm-3, Z = 4, F(000) 

360, μ(Mo-Kα) = 6.80 mm-1. 

Refinement details:  Refinement on F2 gave R1 0.0190 [I > 2σ(I)], wR2 0.0507 

(all data), goodness-of-fit 1.188. 

2.7 Synthesis of arsenoacetic acid – Asx(CH2COOH)x 

Arsenoacetic acid was prepared based on the synthesis by Palmer.40 Sodium 

arsonoacetic acid (12.5 g, 50 mmol) was added to a cold solution of conc. 

H2SO4 (22.5 mL), H3PO2 (47.6 mL, 50% in H2O), H2O (100 mL) and allowed to 

stand at room temperature under N2 for three days. The orange precipitate 

was filtered, washed with water, and dried in vacuo over conc. H2SO4. The 

filtrate was allowed to stand under N2 for another two days, and a second 

crop was obtained. Combined fractions (4.70 g, 70%). 

Found: C, 17.40; H, 2.26%; Asx(CH2COOH)x requires: C, 17.93; H, 2.26% 

1H NMR: [Pyridine-d5] δ 3.59 (s, CH2) ppm 

13C{1H} NMR: [Pyridine-d5] δ 26.9 (s, CH2), 174.1 (s, COOH) ppm 

IR: υ(C=O) 1681 (s) cm-1 

HRMS: [1:1 CH3CN:H2O] (with the addition of pyridine) See Table 2.3 

Table 2.3 - HRMS data for arsenoacetic acid – AsxRx, where R = CH2COOH 

Ion Intensity Measured m/z Calculated m/z Δ m/z 

[(AsR)11-H]- 0.8 1472.275 1472.276 0.001 

[(AsR)10-H]- 0.6 1338.342 1338.341 0.001 

[(AsR)9-H]- 1 1204.409 1204.406 0.003 

[(AsR)8-H]- 0.2 1070.473 1070.471 0.002 

[(AsR)7+O-H]- 4.4 952.528 952.531 0.003 

[(As7R6-2H]- 0.2 876.517 876.515 0.002 

[(AsR)6-H]- 100 802.602 802.602 0.000 

[(As6R5-2H]- 1.4 742.581 742.58 0.001 

[(AsR)5-H]- 50.2 668.667 668.667 0.000 
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[(As5R4-2H]- 7.8 608.646 608.646 0.000 

[(AsR)4-H]- 12.6 534.732 534.732 0.000 

[As4R3-2H]- 5.4 474.711 474.711 0.000 

[(AsR)3-H]- 11.5 400.798 400.797 0.001 

 

2.8 X-ray crystal structure of cyclohexaarsenoacetic acid – 

As6(CH2COOH)6.6C5NH5 

Colourless block crystals of X-ray quality were grown by cooling a saturated 

pyridine solution of arsenoacetic aicd from room temperature to 4 °C. 

Data collection: Unit cell and intensity data were collected at the University of 

Auckland on a Bruker Apex-II CCD Diffractometer, operating at 90 K. 

Absorption corrections were applied using semi-empirical methods 

(SADABS).57 

Solution and Refinement: The three unique As atoms were found by the 

Patterson methods option of SHELX97,58 all other non-hydrogen atoms were 

found in subsequent difference maps. Methylene hydrogen atoms were 

placed in calculated positions, while the OH hydrogen atoms were located in 

a difference map and then refined. All non-hydrogen atoms were refined 

anisotropically. CIF validation was carried out using Platon.59 

Collection data: Crystal size: 0.29 × 0.20 × 0.17 mm, temperature: 90 K, 

total reflections: 37809, unique reflections: 6128 (Rint 

0.0384), range: 1.82° < θ < 28.10°, semi-empirical 

absorption correction Tmax,min: 0.5504, 0.3908. 

Crystal data: C42As6H48O12N6, Mr 1278.38, triclinic, space group Pī, 

a = 10.1456(1), b = 11.6233(1), c = 12.4298(2) Å, 

α = 113.948(1), β = 92.378(1), γ = 106.716(1)°, 

volume = 1261.85(3) Å3, Dcalc = 1.682 g cm-3, Z = 1, 

F(000) 636, μ(Mo-Kα) = 7.1073 mm-1. 
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Refinement details:  Refinement on F2 gave R1 0.0221 [I > 2σ(I)], wR2 0.0466 

(all data), goodness-of-fit 1.035. 

2.9 Synthesis of sodium arsenoacetic acid – Asx(CH2COONa)x 

The water soluble sodium salt of arsenoacetic acid was prepared as 

described by Palmer.37 Arsenoacetic acid (0.50 g, 1.87 mmol) was added to 

an aqueous 5% sodium hydroxide solution (4 mL) and filtered. Ethanol (95%, 

11 mL) was added to the filtrate and a yellow oil separated out. Upon 

standing at room temperature for several hours fine yellow-brown needles 

crystallised, washed with 95% ethanol and dried in vacuo over concentrated 

H2SO4 (0.44 g, 75%). 

1H NMR: [D2O] δ 2.96 (s, CH2) ppm 

13C{1H} NMR: [D2O] δ 31.5 (s, CH2), 180.2 (s, COO-) ppm 

HRMS: [1:1 CH3CN:H2O] (with the addition of pyridine) See Table 2.4 

Table 2.4 - Selected HRMS data for sodium arsenoacetic acid, where 
R = CH2COOH 

Ion Intensity (%) Measured m/z Calculated m/z Δ m/z 

[(AsR)6+3Na+-4H+]- 7.9 868.561 868.547 0.014 

[(AsR)6+2Na+-3H+]- 11 846.578 846.565 0.013 

[(AsR)6+Na+-2H+]- 7.6 824.598 824.584 0.014 

[(AsR)6-H+]- 7.2 802.612 802.602 0.010 

[(AsR)5+3Na+-4H+]- 7.4 734.626 734.612 0.014 

[(AsR)5+2Na+-3H+]- 12.7 712.642 712.631 0.011 

[(AsR)5+Na+-2H+]- 31.7 690.661 690.649 0.012 

[(AsR)5-H+]- 65.4 668.679 668.667 0.012 

[(AsR)4+3Na+-4H+]- 8.6 600.690 600.678 0.012 

[(AsR)4+2Na+-3H+]- 24.9 578.707 578.696 0.011 

[(AsR)4+Na+-2H+]- 36.5 556.724 556.714 0.010 

[(AsR)4-H+]- 47.9 534.743 534.732 0.011 

[(AsR)3+2Na+-3H+]- 24.2 444.768 444.761 0.007 

[(AsR)3+Na+-2H+]- 100 422.788 422.779 0.009 

[(AsR)3-H+]- 63.5 400.806 400.797 0.009 
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2.10 Attempted esterification of arsenoacetic acid – 

(AsCH2COOCH3)x 

Arsenoacetic acid (150 mg, 0.5 mmol) was stirred in SOCl2 (20 mL, excess) 

with a catalytic amount of pyridine under N2 as described by McMurry,60 a 

clear red-orange solution resulted. The reaction was stirred until evolution of 

SO2 and HCl gas stopped. The remaining SOCl2 was removed by vacuum, and 

super-dry methanol (20 mL) was added while vessel was still under N2, 

forming a clear yellow solution. (Discussed in 3.2.7) 

2.11 X-ray crystal structure of S8 

Yellow block crystals of X-ray quality were grown by slow evaporation of a 

crude methanol solution, from the attempted esterification of arsenoacetic 

acid, at room temperature. 

Data collection: Unit cell and intensity data were collected at the University of 

Auckland on a Bruker Apex-II CCD Diffractometer, operating at 90 K. 

Absorption corrections were applied using semi-empirical methods 

(SADABS).57 

Solution and Refinement: All atoms were found by the direct methods of 

SHELX9758 and refined anisotropically using subsequent difference maps. CIF 

validation was carried out using Platon.59 

Collection data: Crystal size: 0.27 × 0.30 × 0.30 mm, temperature: 90 K, 

total reflections: 15373, unique reflections: 5429 (Rint 

0.0196), range: 1.89° < θ < 27.86°, semi-empirical 

absorption correction Tmax,min: 0.6039, 0.5745. 

Crystal data: S8, Mr 256.48, monoclinic, space group P21, a = 

10.6736(1), b = 10.7014(1), c = 10.8139(1) Å, 

β = 95.711(1)°, volume = 1229.06(2) Å3, Dcalc = 2.079 g 

cm-3, Z = 6, F(000) 768, μ(Mo-Kα) = 7.1073 mm-1. 

Refinement details:  Refinement on F2 gave R1 0.0208 [I > 2σ(I)], wR2 0.0514 

(all data), goodness-of-fit 1.090. 
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3. Results and Discussion 

3.1 Arsonoacetic acid and its salts 

3.1.1 Synthesis 

 

Figure 3.1 – Reaction scheme for arsonoacetic acid 

Arsonoacetic acid was synthesised as a precursor to arsenoacetic acid. An 

excess of the relatively insoluble As2O3 was dissolved in a strong caustic 

solution. Palmer discovered the need for the excess by means of an 

iodometric study of the reaction, whereby a 0.1 M iodine solution was 

titrated to determine the concentration of arsenious acid, in the form 

Na3AsO3.40 Chloroacetic acid was then stirred with this solution, forming 

arsonoacetic acid. The excess As2O3 was later removed by acidifying the 

solution with glacial acetic acid, and filtering. 

Stirring the crude filtrate with barium chloride formed a white precipitate, 

practically insoluble in water, making it easy to isolate by filtration alone. The 

barium salt could then be converted to the free acid. Palmer reported a 

method, as described in section 2.5, with an unusual workup. Once the free 

acid had been formed, by stirring with H2SO4, and any excess solvent 

removed by vacuum, the free acid was then extracted into absolute ethanol, 

leaving behind other impurities. Petroleum spirits was then added, and 

removed immediately under vacuum. The reason for the addition of 

petroleum spirits is unknown, however while removing the solvent in vacuo, 

crystals of arsonoacetic acid do form, albeit in lower yields and purity than an 

alternative method reported by Rozoveskaya et al.55  
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Rozovskaya et al. were using arsonoacetic acid for biological work and could 

not subject their enzymes to strong acids. By using a sulfonated resin to 

convert the arsonoacetic acid salt to the free acid, they avoided the use of any 

acids. Simply stirring the easily isolated barium salt with the resin, in water 

for 30 minutes, exchanged Ba2+ for H+ resulting in high yields of the free acid, 

free from impurities. The reaction proceeded very rapidly despite the very 

poor solubility of barium arsonoacetic acid. 

3.1.2 EDX analysis of barium arsonoacetic acid 

Characterisation of the synthesised barium arsonoacetic acid was difficult as 

it is essentially insoluble in all solvents. This was intentional as it could then 

be easily separated from other by products in solution. Heavy metal analysis 

by EDX showed the molar ratio of barium to arsenic, 3:2 agreeing with the 

calculated value for (BaO3AsCH2COO)2Ba. 

3.1.3 Discussion of X-ray crystal structure of arsonoacetic acid 

The structure of arsonoacetic acid was determined by X-ray crystallography, 

shown below in Figure 3.2. It crystallises in the P212121 space group and is 

isomorphous with the phosphorus analogue, phosphonoacetic acid 

(H2O3PCH2COOH), providing a useful comparison.61 

 

Figure 3.2 - The structure and labelling scheme of arsonoacetic acid 
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Table 3.1 - Selected bond lengths (Å) comparing arsono- and phosphono- 
acetic acid 

Arsonoacetic acid Phosphonoacetic acid Δ 

As1-O1 1.7013(13) P-O1 1.544(2) 0.157 

As1-O2 1.6461(12) P-O2 1.494(2) 0.152 

As1-O3 1.7072(13) P-O3 1.544(2) 0.163 

As1-C1 1.9185(17) P-C1 1.799(2) 0.120 

C1-C2 1.509(2) C1-C2 1.503(2) 0.006 

C2-O4 1.312(2) C2-O4 1.305(2) 0.007 

C2-O5 1.210(2) C2-O5 1.216(2) 0.006 

 

Four individual molecules occupy the unit cell, with significant 

intermolecular hydrogen bond interactions. The arsenic is distorted 

tetrahedral, with an average O-As-O angle of 107°, and O-As-C angle of 112°, 

deviating from the perfect tetrahedral angle of 109°. With respect to the 

carboxylic C2, the protonated O2 is trans, O1 and the unprotonated O3 are 

gauche. The dihedral angle between the carboxyl group and a plane through 

O2-As1-C1 is 43°. 

The As-O and As-C bonds are longer than P-O and P-C bonds in 

phosphonoacetic acid partly because of the increased size of the arsenic 

atom, 1.07 and 1.19 Å for phosphorus and arsenic covalent radii respectively. 

Accounting for the difference in atom size, the As-O bonds are slightly weaker 

(longer) than the equivalent P-O bonds, possibly due to the slight increase in 

the electronegativity of phosphorus. 

Using Mogul to compare bond lengths, angles, and torsion angles of similar 

systems in the Cambridge Crystal Database62 resulted in bond lengths and 

angles very close to the average values. The O3-As1-C1 bond angle of 117.4° 

however was the highest of seven similar compounds, the next highest being 

115.1° and the O3-As1-O2 angle of 104.9° being one of the lower values of a 

set of 54 compared compounds. 



Results and Discussion  24 

 

 

Figure 3.3 – Crystal packing diagram of arsonoacetic acid showing 
intermolecular hydrogen bonding 

 

Table 3.2 - Hydrogen bonds for arsonoacetic acid (Å and °), hydrogen atoms 
were placed in calculated positions with refined hydroxyl torsion angles 

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) 

O2-H2···O5i 0.84 1.82 2.612(2) 156.1 

O1-H1···O3ii 0.84 1.79 2.605(2) 162.8 

O4-H4···O3iii 0.84 1.71 2.544(2) 170.6 

Symmetry transformations used to generate equivalent atoms:  
(i): -x+ 3/2, -y, z-1/2; (ii): -x+2, y-1/2, -z+3/2; (iii): -x+3/2, -y+1, 
z+1/2 

 

All oxygen atoms are involved in intermolecular hydrogen bonding, as either 

a donor or acceptor, none as both, or intramolecularly. The unprotonated 

arsonic oxygen, O3 accepts two H atoms from O1 and O4. The carboxyl 

oxygen O5 accepts a H atom from O2, shown above in Figure 3.3. This is an 

identical hydrogen bonding system to phosphonoacetic acid, and appears 

preferable to the typical carboxyl dimer often seen. 

The short distances between the donor and acceptor oxygen atoms indicate 

strong hydrogen bonding interactions. Brown suggests that a bond in the 

region of 2.4–2.7 Å is a strong hydrogen bond.63 There is also a correlation 

between the D···A and the D-H···A angle, the stronger the hydrogen bond, the 
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closer the angle is to 180°.64 This can be clearly seen with O4-H4···O3, the 

shortest D···A distance, having an angle of 170°, whereas O2-H2···O5 and 

O1-H1···O3, being slightly longer and therefore weaker, have an angle closer 

to 160°. 

3.1.4 Discussion of FT-IR results 

 

Figure 3.4 - FT-IR spectra of (1) arsonoacetic acid, (2) sodium arsonoacetic 
acid, (3) barium arsonoacetic acid, KBr disc 

Arsonoacetic acid and its salts exhibit the typical carboxylic acid peaks as 

outlined by Colthup et al.65 Some features in the functional group region 

(4000 – 1000 cm-1) are exhibited in all three compounds, the major peaks are 

summarised in Table 3.3.  
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Table 3.3 - Summary and comparison of  FT-IR data for the barium salt, 
sodium salt and free acid of arsonoacetic acid (cm-1) 

 Free acid (2) Na salt (3) Ba salt (4) 

OH stretch (broad) 3420 (s) 3430 (vs) 3420 (vs) 

Overtone + combination 2550-2300 (w) 2550-2300 (w) 2550-2300 (w) 

C=O stretch 1683 (s) 1620 (s) 1635 (s) 

CH2 bending and scissoring 1448 (m) 

1388 (m) 

1408 (m) 

1376 (m) 

1422 (m) 

1390 (m) 

As=O 892 (s) 891 (w) 881 (m) 

(w) = weak, (m) = medium, (s) = strong, (vs) = very strong 

A very strong, broad OH stretch peak can be seen for both the barium and 

sodium salts, these both crystallise as hydrates, whereas the free acid is 

anhydrous. This peak in the free acid is from the carboxyl and arsonic 

hydroxyl groups. Two sharp peaks are clearly visible in the free acid at 3000 

and 2936 cm-1, from CH2 symmetric and asymmetric stretching. Upon closer 

inspection, these peaks are also visible for the salts, however the broader OH 

peak overpowers them. The weak shoulder at 2550 – 2300 cm-1 may be 

caused by overtones, and combinations of C-O stretches and OH deformation 

vibrations;66 Braunholtz et al. however suggest this peak should be assigned 

to OH stretching under strong hydrogen bonding conditions.67 From this it 

could be reasoned that the free acid has a much more intense peak because of 

the strong intermolecular hydrogen bonding network. It is likely that not all 

hydroxyl groups have been exchanged during the synthesis of the salts and so 

still exhibit a weaker OH peak. The water from the hydrate could also 

contribute to this region. The broad peak at 1116 cm-1 in sodium 

arsonoacetic acid appears to be from residual sulfate. Bardos et al. suggest 

the peak at 880 – 900 cm-1 is from As=O stretching.68 
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Figure 3.7- Structure of a phosphonium ylide and its resonance phosphorane 
form  

Ylides are stable, neutral molecules that contain an adjacent negative and 

positive charge but are commonly represented by resonance structures 

(Figure 3.7).69 Ylides are commonly seen in organic syntheses as reagents or 

reactive intermediates, the Wittig reaction being one of the more common 

reactions.  

 

Figure 3.8 – Proposed structure of 260.877 Da ion in arsonoacetic acid mass 
spectrum 

The smallest peak is at 260.877 Da, and is assignable to [C2As2H7O5]- with an 

m/z of 260.873. A plausible structure is shown in Figure 3.8 which could 

come about from the condensation reaction of two ylide type rearrangement 

ions. 
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The mass spectrum of the sodium salt was obtained in H2O and is shown in 

Figure 3.9. 

 

Figure 3.9 - HRMS of sodium arsonoacetic acid in H2O, negative ion mode 

The peaks in the mass spectrum of the sodium salt are not as readily assigned 

as they are for arsonoacetic acid. The major peak can be assigned to the ylide 

type fragment in which the carboxyl group is lost [H2O3As=CH2]- (m/z 

138.943), one of the smaller peaks seen in the spectrum of the free acid. The 

next largest peak is from the free acid, H2O3AsR- (m/z 182.993), where 

R = CH2COO-. It is only in one of the minor peaks we can see an ion associated 

with sodium, where one hydrogen has been exchanged to give NaHO3AsR- 

(m/z 204.95). Also visible, although small are the [(H2O3AsR)2+H]- (m/z 

366.863) and [(H2O3AsR)2+Na]- (m/z 388.845) ions. The ion at m/z 260 that 

was seen in the free acid, is also present here. It is once again able to be 

assigned the formula [C2As2H7O5]- (m/z 260.873), and likely to be from that 

of the ion shown in Figure 3.8. 
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3.1.6 Discussion of NMR results 

 

Figure 3.10 - 1H NMR of the sodium salt and free acid of arsonoacetic acid 
(D2O) 

The 1H-NMR spectrum of arsonoacetic acid and its salts in D2O are very 

simple, showing only the CH2 peak and the residual HOD solvent peak. No 

spectrum could be obtained of the barium salt because of its very poor 

solubility. 

The spectra could be used as in an indicator of purity, as other products 

(containing hydrogen atoms) would be clearly seen. The free acid CH2 peak is 

seen at 3.73 ppm, and the sodium salt more upfield at 3.16 ppm.  

The change in chemical shift is much larger here than is seen in the 1H 

spectra of similar set of compounds, acetic acid and sodium acetate. The 

sodium acetate CH3 peak (1.92 ppm) moves upfield from the corresponding 

acetic acid peak (2.10 ppm) by 0.18 ppm. The sodium arsonoacetic acid CH2 

peak moves upfield from the free acid by 0.56 ppm.  

The large change in chemical shifts must be able to be explained by the 

difference in structures. Arsonoacetic acid contains more groups able to carry 

charge than acetic acid, the carboxylate group, and the arsonic acid group. 

With the likelihood of more charged molecules in solution, electron density 
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can be withdrawn from the surrounding hydrogen, deshielding them, moving 

their signals further downfield. 

 

Figure 3.11 - 13C NMR of sodium salt and free acid of arsonoacetic acid (D2O) 

The 13C NMR spectra are also simple and readily assigned to the CH2 and 

COOH carbons. The chemical shifts of the sodium salt peaks are slightly 

further downfield than those of the free acid; the COOH and CH2 by 4 and 3 

ppm respectively. Unlike the 1H NMR, this is consistent with what is seen in 

the 13C NMR spectra of acetic acid and sodium acetate, assumedly because 

the carbons are not involved in hydrogen bonding. 
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3.2 Arsenoacetic acid 

3.2.1 Synthesis 

 

Figure 3.12 – Reaction scheme for arsenoacetic acid 

Arsenoacetic acid was synthesised by reducing sodium arsonoacetic acid in a 

strongly acidic solution over a period of 3-5 days, using H3PO2 as the 

reducing agent. Palmer40 used sodium hypophosphite (NaH2PO2), however 

this was not available, and H3PO2 provided comparable results. The orange 

precipitate was filtered after day three and the filtrate was left a further two 

days at which time a second crop could be filtered. The product was washed 

in water, in which it is practically insoluble.   

If the product was left in solution longer, it began to darken and significant 

signs of impurities were seen in the mass spectrum. Palmer attributes this to 

the formation of ‘inorganic arsenic’ compounds and polyarsenide species.37 

The product is soluble in dilute sodium hydroxide as well as in pyridine. 

When dissolved in sodium hydroxide however, the colour of the solution 

changes within 1-2 hours, from an orange to a colourless solution, indicating 

breakdown. Crystals of X-ray quality were grown in a pyridine solution and 

stored over a period of weeks with no sign of degradation. The crystals did 

however decompose upon loss of solvent. 
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3.2.2 Discussion of X-ray crystal structure of cyclohexaarsonoacetic acid 

A definitive structure of cyclohexaarsenoacetic acid was determined by 

means of X-ray crystallography, shown in Figure 3.13. Attempts to obtain 

crystals of other ring sizes were not successful. 

 

 

Figure 3.13 – The structure and labelling scheme of cyclohexaarsenoacetic 
acid (pyridine solvate molecules omitted for clarity). Only half the molecule is 
labelled, as the other half is generated by a crystallographic inversion centre 
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Table 3.4 - Selected bond lengths and angles for cyclohexaarsenoacetic acid 

Bond lengths (Å)  Bond angles (°) 

As1-As2 2.4566(3)  As2-As1-As3i 88.753(8) 

As1-As3i 2.4628(3)  As1-As2-As3 89.228(9) 

As2-As3 2.4589(3)  As2-As3-As1i 87.856(9) 

As1-C11 1.9994(19)  C11-As1-As2 97.92(5) 

As2-C21 1.9969(18)  C21-As2-As3 99.52(6) 

As3-C31 2.0006(18)  C31-As3-As1i 99.19(6) 

O11-C12  1.216(2)  O11-C12-O12 124.27(17) 

O12-C12  1.324(2)  O21-C22-O22 122.75(18) 

O21-C22  1.220(2)  O31-C32-O32 124.10(18) 

O22-C22  1.336(2)    

O31-C32  1.215(2)    

O32-C32  1.332(2)    

Symmetry transformations used to generate equivalent atoms:  
(i): -x+2, -y+1, -z+1 

There are only eight unique cycloarsenic compounds on the Cambridge 

Crystal Database62 with simple R substituents. The three hexacyclic 

compounds all have aromatic substituents, making cyclohexaarsenoacetic 

acid the first crystallised hexacylic arsenic compound with only aliphatic 

substituents. Cyclohexaarsenoacetic acid exhibits many of the same 

characteristics as previously reported cyclic arseno compounds. 

Cyclohexaarsenoacetic acid crystallises in the Pī space group, with one acid 

molecule and six pyridine molecules in the unit cell (Figure 3.14). Because of 

the symmetry present, only half of the unit cell is unique.  

The average As-As bond length is 2.459 Å, consistent with the crystal 

structure of (AsPh)6, and the typical average As-As bond of 2.459 Å described 

by Rheingold.52 The ring is in a slightly more puckered chair conformation 

than (AsPh)6 with an average As-As-As angle of 88.6° compared to 91.0°. All 

substituents are in equatorial positions. The C=O twists away slightly from the 

ring; the plane running through O-C-O is not exactly perpendicular to the 

As-C bond. The average angle of this twist is 4.2°. 
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Figure 3.14- Structure of cyclohexaarsonoacetic acid with the six hydrogen 

bonded pyridine solvate molecules 

 

 

Figure 3.15 – Crystal packing diagram of cyclohexaarsenoacetic acid showing 
hydrogen bonds to pyridine molecules. Hydrogen atoms are omitted for clarity 
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Table 3.5 - Hydrogen bonds for cyclohexaarsenoacetic acid (Å and °) 

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) 

 O12-H1···N5i 0.85(3) 1.74(3) 2.585(2) 178(3) 

 O22-H2···N4ii 0.82(3) 1.84(3) 2.658(2) 178(3) 

 O32-H3···N6iii 0.89(3) 1.74(3) 2.630(2) 172(3) 

Symmetry transformations used to generate equivalent atoms:  
(i): x, y+1, z; (ii): -x+1, -y, -z+1; (iii): -x+2, -y+2, -z+2  

The hydrogen bonding in this crystal structure occurs between the carboxyl 

groups of the acid and the pyridine solvate molecules situated above each 

group. This encourages the formation of alternating layers of the acid, and 

pyridine molecules (Figure 3.15). The hydrogen position was refined and 

found within O-H bond distance, making it an O-H···N hydrogen bond, rather 

than an O···H-N pyridinium ion. 

 

Figure 3.16 - Structural diagram showing the stacking of a layer of pyridine 
molecules in the cyclohexaarsenoacetic acid crystal structure 

The H···N distance is relatively short, indicating a strong hydrogen bond. 

O12-H1···N5 and O32-H3···N6 are 0.13 Å shorter than the average H···N 

distance reported in a review by Jeffrey.70 The hydrogen bonding forces the 

pyridine molecules to pack together relatively closely, with approximately 

3.7 - 3.9 Å between adjacent molecules. Weak noncovalent π-π stacking 

interactions occur at these lengths.71 Energy minimisation calculations have 

been done with benzene molecules, and the lowest configurations were 

parallel stacking, and also a T-shape, where one molecule is perpendicular to 
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the other.71 Both types of interactions occur within this crystal structure 

between the pyridine molecules. 

The X-ray crystal structure of cyclohexaarsenoacetic acid provides definitive 

evidence of the proposed cyclic structure of arsenoacetic acid. In keeping 

with previously determined cycloarsenic structures, the arsenic forms a 

puckered ring, with all substituents in equitorial positions. Further evidence 

for this structure is discussed in the following sections, with the hindsight of 

this data. 

3.2.3 Discussion of FT-IR results 

 

 

Figure 3.17 - FT-IR spectrum of (1) arsenoacetic acid, (2) arsonoacetic acid 

Arsenoacetic acid and its precursor arsonoacetic acid share many peaks as 

one would expect. The major peaks are summarised and compared below in 

Table 3.6. 
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Table 3.6 - Summary and comparison of  FT-IR data for arseno- acid and 
arsono- acetic acid (cm-1) 

 Arsenoacetic acid (1) Arsonoacetic acid (2) 

OH stretch (broad) 3300-3700 (vs) 3300-3700 (s) 

C=O stretch 1681 (s) 1683 (s) 

CH2 bending and scissoring 1439 (m) 

1384 (w) 

1448 (m) 

1388 (m) 

C-O stretch 1303 (s) 1303 (s) 

(w) = weak, (m) = medium, (s) = strong, (vs) = very strong 

 

There is a very close correlation between the two spectra, the maximum 

difference being 9 cm-1 for one of the CH2 bending modes. The As=O stretches 

at about 890 cm-1, present in arsonoacetic acid and its salts, are absent from 

arsenoacetic acid, which is a good initial confirmation that arsonoacetic acid 

has been reduced, and now only forming As-As or As-C bonds. Also absent in 

the spectrum of arsenoacetic acid, is the very broad band from 3800-

2000 cm-1 caused by the strong intermolecular hydrogen bond network 

present in arsonoacetic acid. 

3.2.4 Discussion of HRMS results 

The mass spectrum of arsenoacetic acid is so far the only indication that 

various sized cyclic structures (RAs)n exist together in solution.  

 

Figure 3.18 - Diagram showing (a) Palmer’s original diarsene structure of 
arsenoacetic acid, (b) newly proposed cyclic structure 

Palmer, who synthesised arsenoacetic acid initially, assigned the compound 

as a diarsene (Figure 3.18a).37 By analogy with the recent work done on 
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Salvarsan by Lloyd et al., it seems likely that rather than a simple diarsene 

compound, multiple cyclic compounds are present in the one solution.17 The 

evidence for this can be seen below in Figure 3.19. The addition of pyridine to 

deprotonate the acid was required before a spectrum could be seen. 

 

 

Figure 3.19 - HRMS of arsenoacetic acid in H2O, m/z 400-850, negative ion 
mode (ring substituents off each As have been left off for clarity) 

The series [(RAs)3-H]-, [(RAs)4-H]-, [(RAs)5-H]- and [(RAs)6-H]- are present as 

the four main peaks, where R = CH2COOH. Upon closer inspection at higher 

masses, the series can be seen continuing up to [(RAs)11-H]-. Peaks exactly 

2.02 Da lower than the [(RAs)n-H]- ions are present all the way through the 

spectrum, the mass of exactly two hydrogen atoms. The exact arrangement is 

unknown, however it is possible that two substituents are forming an As=C 

bond, where previously there was only a single bond. Only the -2H peak is 

seen, and no other combinations which is unusual.   

It has been suggested previously that only one species is present in solutions 

of cycloarsenic compounds, and the observed mass spectrum is a 
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combination of fragment ions and aggregates.36 This is most likely true for 

spectra obtained using electron impact (EI) ionisation. This is a much harsher 

ionisation technique than the electrospray ionisation (ESI) source present in 

the MicrOTOF. ESI has been shown to be a soft ionisation technique, not 

leading to significant fragmentation, making it ideal for speciation studies as 

M+ parent ions are usually seen.72, 73 

When varying the cone voltage, the relative intensities of the peaks for 

arsenoacetic acid only change slightly. If the smaller rings were caused by 

fragmentation, you would expect a significant change under different 

conditions, suggesting the presence of multiple cyclic species. Lloyd et al. also 

carried out MS/MS studies whereby fragmentation was deliberately induced. 

No sign of smaller ring sizes forming from the larger were present, only R, 

R2As, and R3As fragments.17 

The water soluble sodium salt of arsenoacetic was also synthesised, the 

HRMS is shown below in Figure 3.20. Like the free acid,  the addition of 

pyridine was required to see a mass spectrum of the sodium salt. This seems 

unusual as the presence of sodium will increase the pH of the solution, which 

should deprotonate the acid without the addition of a base. 

 

Figure 3.20- HRMS of sodium arsenoacetic acid in H2O, negative ion mode 
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Table 3.7 - Peak assignment for the HRMS of sodium arsenoacetic acid (Figure 
3.20) 

Ion m/z Ion m/z 

[(AsR)6+3Na+-4H+]- 868.561 [(AsR)4+3Na+-4H+]- 600.69 

[(AsR)6+2Na+-3H+]- 846.578 [(AsR)4+2Na+-3H+]- 578.707 

[(AsR)6+Na+-2H+]- 824.598 [(AsR)4+Na+-2H+]- 556.724 

[(AsR)6-H+]- 802.612 [(AsR)4-H+]- 534.743 

[(AsR)5+3Na+-4H+]- 734.626 [(AsR)3+2Na+-3H+]- 444.768 

[(AsR)5+2Na+-3H+]- 712.642 [(AsR)3+Na+-2H+]- 422.788 

[(AsR)5+Na+-2H+]- 690.661 [(AsR)3-H+]- 400.806 

[(AsR)5-H+]- 668.679   

 

Although complex, most peaks can be readily assigned. The same [(RAs)n-H]- 

(n = 3-6) series present in the arsenoacetic acid spectrum are present here. 

The relative intensities of the different ring sizes appear to be different from 

that of the free acid.  

 

Figure 3.21- Isotope patterns of the 422.788 and 400.806 Da ions in the 
sodium arsonoacetic acid mass spectrum 

It appears that the three-membered ring is the most abundant, contradictory 

to the free acid, however upon closer inspection, two of the peaks 

(m/z 422.788 and 400.806) are disproportionately larger than the other ions 

associated with the three-membered ring. They also have isotope patterns 

with 0.5 Da increments, indicative of a 2- ion. The higher pH generated by 

sodium may encourage the formation of multiply charged ions more so than 

the free acid.  
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From the isotope pattern we can calculate that 32% of the 422.788 Da signal 

is from [(RAs)6+Na-3H]2-, and 70% of the 400.806 Da signal is from 

[(RAs)6-2H]2-. Even with the contributions from these peaks, it appears the 

six-membered ring is still not as abundant as in the free acid. It is possible 

that more highly charged ions are present, contributing to an even greater 

percentage of ions attributed to the six-membered ring, however mass 

spectral data was not obtained below 400 Da, excluding these peaks. 

Also present are the series of ions, whereby one, two, or three of the hydroxyl 

hydrogen atoms have been replaced by sodium. This gives the series 

[(RAs-H+Na)n-H]-, [(RAs-2H+3Na)n-H]-, and [(RAs-3H+3Na)n-H]-. Ions with 

more than three sodium atoms are not seen, even for the larger ring sizes. 

The degree to which sodium has replaced the hydroxyl hydrogen atoms in 

the salt cannot be identified from this spectrum because of the equilibria the 

acid undergoes in solution. It could be assumed that even if only some of the 

hydroxyl hydrogen atoms were exchanged, the product would still be water 

soluble.  

Data obtained for both arsenoacetic acid and its sodium salt provide evidence 

for the presence of multiple cyclic structures in solution, where once a 

diarsene structure was proposed.  

3.2.5 Discussion of NMR results 

The 13C spectra of arsenoacetic acid and its precursor arsonoacetic acid are 

shown in Figure 3.22. The acetic acid group gives rise to the two peaks 

present in both compounds, and the chemical shifts of both compounds vary 

only a little. Although an indication of their similar chemical environments, 

direct comparisons cannot be made because of solvent effects. Arsenoacetic 

acid was run in pyridine-d5 and arsonoacetic acid in D2O. 
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Figure 3.22- 13C NMR data comparing arsenoacetic (pyridine-d5) and its 
precursor arsonoacetic acid (D2O) 

Both the 1H (Figure 3.23) and 13C (Figure 3.24) NMR spectra of arsonoacetic 

acid are very simple, and not particularly useful for the characterisation of 

arsenoacetic acid. However, resolution enhancement of the CH2 peak, directly 

bonded to the arsenic ring, were carried out in hope of gaining more insight 

into the presence of multiple cycloarsenic structures of varying sizes in 

solution.  

In organic systems, different sized rings have been well studied, and was 

shown to have a significant effect on the chemical shift of an exocyclic 

carbonyl group because of ring strain.74 The 13C CH2 peak in ethylcyclohexane 

and ethylcyclopentane come at 30 and 29 ppm, the 1H at 0.85 and 0.90 ppm 

respectively.  

A group studying cycloantimony and –bismuth rings with (Me3S2)CH groups 

were able to identify different ring sizes an equilibrium mixture of R3Bi3 and 

R3Bi4 in the 1H NMR, seeing separation for both the CH3 and CH proton 

signals.75  
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Figure 3.23 – 1H NMR spectrum of arsenoacetic acid (pyridine-d5) with 
expansion and resolution enhancement of CH2 peak 

 

 

 

Figure 3.24 - 13C NMR spectrum of arsenoacetic acid (pyridine-d5) with 
expansion and resolution enhancement of CH2 peak 
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Although all cases are different to that of arsenoacetic acid, clear analogies 

can be seen. In the case of arsenoacetic acid, we assumed that the CH2 bonded 

to the arsenic ring would have a slightly different chemical shift, depending 

on the size of the ring they are bonded to. Therefore, if there were multiple 

molecules, varying in ring size in solution, we would see either multiple 

peaks, or a broadening of the peak if the chemical shifts were very close. 

There are no signs of multiple peaks, or broadening of the 1H peak (Figure 

3.23), nor for the equivalent 13C peak (Figure 3.24), even after applying 

resolution enhancement. The protons giving rise to this peak are two bonds 

away from the ring itself, this could be too far away to observe the effect; the 

carbon atom however is attached directly to the ring. 

Two scenarios could explain this. Firstly, the sharpness of the peak could 

indicate that only one ring size is present in solution. A crystal was grown in 

pyridine and the structure determined to be that of the six-membered 

cycloarsenoacetic acid. With those two pieces of data, it could be said that 

only cyclohexaarsenoacetic acid is present in a pyridine solution. The second 

possible explanation is less likely, however if there were multiple ring sizes 

rapidly interconverting between one another, a sharp peak would also be 

seen. 

3.2.6 Attempted separation of rings using HPLC 

An attempt was made to separate out the series of cycloarsenic structures 

using HPLC with an anion exchange column. The separation and 

identification of arsenic speciation has been carried out previously with great 

success using anion exchange HPLC.76, 77 

Using a basic solvent, each acetic acid group should carry a negative charge 

which will interact with the column. The six-membered ring will have more 

negative charge than the five-membered ring, which has more negative 

charge than the four-membered ring etc., hopefully being sufficient to 

separate each ring size. The fractions would then be collected and analysed 

using HRMS. 
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Separation proved to be more difficult than anticipated. For practical 

purposes, sodium hydroxide was used as the base, however arsenoacetic acid 

appears to degrade in this solution over a period of 1 – 2 hours, changing 

from orange to colourless. With HPLC runs of 40 mins this would be sufficient 

time to collect fractions and still see the intended peak in the mass spectrum. 

The TIC of a run using sodium hydroxide as the base is shown in Figure 3.25. 

 

Figure 3.25 –HPLC max plot of arsenoacetic acid in 5:95 MeCN:H2O, 50 mmol 
NaOH (190 – 400 nm) 

There are four clearly visible peaks and one small ‘hump’ visible in the TIC 

where sodium hydroxide was used, all having a λmax at 214 ± 2 nm. The two 

peaks eluting last also have a shoulder occurring ~235 nm giving them a 

much broader UV spectrum. Smaller ring sizes would elute first, however 

from the UV data it is impossible to say which compound has eluted when, or 

if separation has occurred at all. During the 40 minute run, it is likely that 

degradation has occurred to some degree because of the sodium hydroxide. It 

is possible the peaks seen could be various degradation products with similar 

UV spectra. In the UV-Vis spectrum of the crude arsenoacetic mixture, the 

shoulder peak at ~235 nm was seen, however it was more defined. Since the 

UV-Vis spectrum was obtained much quicker than that from HPLC, is it 

possible that the lack of definition of this peak indicates degradation.  

Fractions were collected and analysed by mass spectrometry but no peaks 

were seen. 
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Figure 3.26 –HPLC max plot of arsenoacetic acid in 5:95 MeCN:H2O, 40 mmol 
pyridine (190 – 400 nm) 

Pyridine was also tried as a base giving a very different result (Figure 3.26). 

No sign of separation was seen. Since pyridine is a weaker base than sodium 

hydroxide, it is possible that not all acetic acid groups had a negative charge. 

It was still assumed that the larger ring sizes would overall be more 

negatively charged than their smaller counterparts. As seen in the solid state 

by X-ray crystalloagraphy (Section 3.2.2), the pyridine molecules merely 

hydrogen bond to the carboxyl hydrogen, rather than forming a pyridinium 

ion and a negatively charged carboxyl group. This could be the same case in 

solution, where the pyridine aids in the solubility of arsenoacetic acid, but 

does not create the negative charge required for separation in an anionic 

exchange column, potentially explaining why only one broad peak is seen 

eluting. By increasing the concentration of pyridine from 40 to 100 mmol, the 

broad peak elutes 3 minutes earlier (from 9 to 6 min) and there is a loss of 

sensitivity from the UV detector because of the increased intensity of 

pyridine in the solvent. A sample from this broad peak shows the original 

mass spectrum containing peaks from multiple ring sizes. 

Also worthy of mention is the difference in the λmax measured using the two 

different bases, 214 nm in the sodium hydroxide solution and 272 nm in the 

pyridine solution. The λmax of an acetate group is ~208 nm78, so it is likely 

that the 214 nm chromophore in the sodium hydroxide solution, is from the 

carboxylate group in arsenoacetic acid. The 272 nm wavelength observed in 
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the pyridine solution lies within the range typically seen for pyridinium 

cations. It is possible that this is what we are seeing here.  

The pyridine is the only thing keeping arsenoacetic acid in solution, as it is 

practically insoluble in water, and so the interactions between pyridine and 

the acid will be relatively strong. Even though in the crystal structure of 

cyclohexaarsonoacetic acid we see a pyridine molecule hydrogen bonded to 

the acid, in solution the pyridine molecules may carry a slight charge, and 

give rise to this particular wavelength. Even if it is the pyridinium ion we are 

detecting, rather than the acid itself, it can still be used to identify when 

arsenoacetic acid elutes. If the peak we see elutes from 9-12 minutes, this is 

the time at which arsnoacetic acid is eluting, as it is the only time the 

pyridinium ion exists because of the interactions with the acid. This still 

indicates that no separation has occurred in the anion exchange column. 

3.2.7 Attempted esterification of arsenoacetic acid, NMR spectroscopy 

and GC-MS results 

An attempt to synthesise the methyl ester of arsenoacetic acid was made in 

hope of making a compound able to be run directly on a GC or reverse phased 

HPLC column.  

Direct esterification was attempted by stirring arsenoacetic acid in methanol, 

however because of the poor solubility of arsenoacetic acid, no reaction took 

place, even after stirring for 24 hours.  

Making the methyl ester Pī the acid chloride was then attempted. 

Arsenoacetic acid was added to thionyl chloride, and a few drops of pyridine 

under N2. McMurry60 proposes that the pyridine speeds up the reaction by 

making more Cl- available. Arsenoacetic acid did not dissolve in the thionyl 

chloride until the pyridine was added, so in this reaction it may just be 

necessary to dissolve the acid so that it is able to react. Initially it appeared 

that arsenoacetic acid would not dissolve in thionyl chloride, but on addition 

of pyridine, it dissolved instantly forming a dark orange solution. Once the 

evolution of SO2 and HCl had stopped, the thionyl chloride was removed 
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under vacuum. Super dry methanol was added resulting in a bright yellow 

solution. Whilst in the methanol solution there were no visual signs of 

degradation even after months of storage. 

 

Figure 3.27 – 1H NMR of crude solution from attempted esterification of 
arsenoacetic acid (CDCl3) 

The NMR spectrum of the crude product (Figure 3.27) shows that the methyl 

ester is not the only product to have formed, if at all. Peaks occur in the 

regions where we would expect the methylene protons (3.5 ppm) and the 

ester methyl protons (3.8 – 4.0 ppm), however there are also many other 

peaks in this region. Although it is possible the arsenoacetic acid methyl ester 

had formed, it could not be confirmed from this spectrum. The mass 

spectrum was also messy, and no identifiable peaks could be seen. 

The crude yellow methanol solution was run on the GC, however only ions 

smaller than expected were seen. Palmer37 observed decomposition of 

arsenoacetic acid at temperatures above 205 °C, however this temperatue 

was not reached in the GC until after all peaks had eluted, ruling out thermal 

decomposition. The TIC can be seen below in Figure 3.28. 

1.01.52.02.53.03.54.0 ppm
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Figure 3.28 -  TIC from GC-MS of crude methanol solution from the 
esterification of arsenoacetic acid 

A large solvent front and fast eluting compounds could be seen up to 3.6 

mins. A shoulder at the end of the peak revealed the presence of the relatively 

stable AsCl3+ fragment with an m/z of 180, most likely coming from the 

reaction with SOCl2.   

Two of the peaks (7.6 and 8.2 mins) show three interesting fragments at 

m/z 59, 75 and 134, assigned COOCH3+, As+ and AsCOOCH3+ respectively. 

These are potentially fragments of an arsenoacetic acid ester. The peaks 

eluting at different times could be because of the presence of different ring 

sizes, or only some of the acetic acid groups being esterified. 

From 11.0 – 11.8 mins, something can be seen slowly eluting off the column 

with a peak showing at 11.8 mins, this is typical of S8, S6 and similar 

degradation products. This was the final peak to elute. 

From these observations, it appears that the methyl ester can not be formed 

via the acid chloride pathway.  

3.2.8 Discussion of X-ray crystal structure of β-monoclinic S8 (β-S8) 

Serendipitously, crystals that had formed in the crude methanol solution 

were analysed by X-ray crystallography and determined to be sulfur, β-S8 

(Figure 3.29). This agrees with the sulfur peak seen in the previously 

discussed GC-MS data. It appears that arsenoacetic acid reduces SOCl2 when 

7.6 8.2

11.8
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trying to synthesise the acid chloride, forming elemental sulfur and AsCl3, 

also identified in the GC-MS.  

 

Figure 3.29 – Molecular diagram of β-monoclinic S8 showing unit cell and 
labelling scheme. Note only half the molecules in the unit cell are unique 

Although the β-monoclinic allotrope of S8 that crystallised has previously 

been determined, it is said to be unstable with respect to the orthorhombic S8 

at temperatures below 95.3 °C.79-82 Our solution was never heated above 

room temperature, and was also stored at room temperature. Previous 

attempts to crystallise the β form from molten sulfur have shown that if kept 

at room temperature, conversion to the polycrystalline orthorhombic sulfur 

occurs within the hour.80 The enthalpy of the transition from α to β form is 

small (0.4 kJ mol-1 at 95 °C).83 

The reason for favouring the β-monoclinic allotrope under these conditions is 

unknown. A plausible explanation is that the oxidised arsenic, or any of the 

other impurities in solution may stabilise it, or make the α-S8 less favourable 

somehow. It is not possible to determine exactly what was in the methanol 
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solution that may have caused this, but it is unambiguous that the conditions 

not only led to crystallisation of the high temperature phase at room 

temperature and the resulting crystals survived unchanged at room 

temperature for several months. 

Previously, β-S8 has only been prepared from molten sulfur. When 

crystallising, it is very likely that some of the α-S8 allotrope also forms, 

although able to be separated visually. The presence of α-S8 could act as a 

seed crystal for the conversion from the β-monoclinic form to the 

orthorhombic form. It is possible that from the methanol solution, only the 

β allotrope crystallised. The absence of any seeding α-S8 crystals could 

explain why the β-S8 survived so long at room temperature. 

The unit cell consists of six S8 rings in a crown conformation in the P21 space 

group. Only half of the rings in the unit cell are unique as the other half are 

generated by two screw axes.  

An in-depth study by Goldsmith and Strouse revealed that at room 

temperature, β-S8 exhibits space group symmetry P21/c. Of the six molecules 

in the unit cell, two are twofold disordered with an inversion centre.81 At 

temperatures below 198 K, the molecules become more ordered. The 

inversion centre and c glide plane vanish, resulting in a P21 space group as 

seen in this crystal structure.81 

Twinning was seen in the room temperature crystal structure of β-S8 

reported by Templeton, whereby the directions of the a and b axes are 

reversed and so the structure was refined as a racemic twin.79, 80 The 

twinning appears to be present in this crystal structure as well. Templeton 

describes a pseudosymmetry that would allow the two different orientations 

to exist simultaneously at the twin boundary and if this symmetry were to be 

present throughout the entire crystal, it is suggested that it would exhibit 

ferroelastic properties.80 

The bond lengths and angles vary little. The bond lengths are 2.05 (± 0.01) Å 

and the angles, 107.8° (± 0.2). 
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4. Conclusions 

 

The structure of arsonoacetic acid has been confirmed by means of X-ray 

crystallography, mass spectral data and NMR. The crystal structure was 

found to be isomorphous with the phosphorus analogue, phosphonoacetic 

acid.  

Mass spectral data shows that arsenoacetic acid exists as a mixture of 

different sized cycloarsenic structures in solution, not as the diarsene 

structure that was first proposed, a characteristic first noticed by Lloyd et al. 

in Salvarsan.17 This is in agreement with today’s understanding that As=As 

bonds only form when the substituents are very sterically crowded.20  

The structure of the six-membered arseno ring, cyclohexaarsenoacetic acid, 

has been determined without doubt by means of X-ray crystallography. Like 

previously reported cycloarsenic crystal structures, arsenoacetic acid forms a 

puckered arseno ring with all substituents in equitorial positions.  

Although no other ring sizes could be isolated, this is not sufficient evidence 

to say that the other ring sizes are not present. Work done on cyclobismuth 

systems have resulted in definitive NMR data supporting the existence of a 

five-membered ring, yet crystal structures have only been obtained for the 

three- and four-membered rings.75 Mass spectral data of the cyclobismuth 

compounds was not published. However in the present case, the lack of any 

broadening or splitting of the 13C or 1H signals is a puzzle if there are indeed 

varying ring sizes in the sample. 
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5. Appendix – Complete X-Ray Crystal Data 

5.1 Arsonoacetic acid – H2O3AsCH2COOH 

Table 5.1 - Crystal data and structure refinement for arsonoacetic acid 

Empirical formula  C2H5AsO5 

Formula weight  183.98 

Temperature  93(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.0904(3) Å 

 b = 7.7557(4) Å 

 c = 10.4713(5) Å 

Volume 494.62(4) Å3 

Z 4 

Density (calculated) 2.471 Mg/m3 

Absorption coefficient 6.800 mm-1 

F(000) 360 

Crystal size 0.40 × 0.56 × 0.60 mm3 

Theta range for data collection 3.27 to 32.61°. 

Index ranges -8<=h<=8, -11<=k<=11, -15<=l<=15 

Reflections collected 13348 

Independent reflections 1764 [R(int) = 0.0548] 

Completeness to theta = 32.61° 98.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.1718 and 0.1057 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1764 / 0 / 76 

Goodness-of-fit on F2 1.188 

Final R indices [I>2sigma(I)] R1 = 0.0190, wR2 = 0.0507 

R indices (all data) R1 = 0.0192, wR2 = 0.0507 

Largest diff. peak and hole 0.384 and -1.202 e Å-3 
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Table 5.2 - Atomic coordinates ( × 104) and equivalent isotropic displacement 
parameters (Å2 × 103) for arsonoacetic acid. U(eq) is defined as one third of 

the trace of the orthogonalized Uij tensor 

 

x y z U(eq) 

As(1) 8947(1) 2781(1) 6528(1) 8(1) 

C(1) 6659(3) 1721(2) 7514(2) 11(1) 

C(2) 6573(3) 2427(2) 8856(2) 10(1) 

O(1) 9195(3) 1782(2) 5089(1) 15(1) 

O(2) 8677(2) 4842(2) 6188(1) 13(1) 

O(3) 11344(2) 2563(2) 7358(1) 14(1) 

O(4) 6691(3) 4116(2) 8893(1) 16(1) 

O(5) 6391(3) 1532(2) 9796(1) 21(1) 

 

Table 5.3 - Complete bond lengths (Å) for arsonoacetic acid 

As(1)-O(2)  1.6461(12) C(1)-H(12)  0.99 

As(1)-O(1)  1.7013(13) C(2)-O(5)  1.210(2) 

As(1)-O(3)  1.7072(13) C(2)-O(4)  1.3117(19) 

As(1)-C(1)  1.9185(17) O(1)-H(1)  0.57(9) 

C(1)-C(2)  1.509(2) O(3)-H(2)  0.63(6) 

C(1)-H(11)  0.99 O(4)-H(3)  0.92(3) 

 

Table 5.4 - Complete bond angles (°) for arsonoacetic acid 

O(2)-As(1)-O(1) 105.04(6) C(2)-C(1)-H(12) 109.3 

O(2)-As(1)-O(3) 106.93(7) As(1)-C(1)-H(12) 109.3 

O(1)-As(1)-O(3) 109.24(7) H(11)-C(1)-H(12) 107.9 

O(2)-As(1)-C(1) 117.38(7) O(5)-C(2)-O(4) 123.61(16) 

O(1)-As(1)-C(1) 110.25(7) O(5)-C(2)-C(1) 123.54(15) 

O(3)-As(1)-C(1) 107.77(7) O(4)-C(2)-C(1) 112.84(15) 

C(2)-C(1)-As(1) 111.76(11) As(1)-O(1)-H(1) 125(6) 

C(2)-C(1)-H(11) 109.3 As(1)-O(3)-H(2) 130(5) 

As(1)-C(1)-H(11) 109.3 C(2)-O(4)-H(3) 108(3) 
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Table 5.5 - Anisotropic displacement parameters (Å2 × 103)for arsonoacetic 
acid. The anisotropic displacement factor exponent takes the form: 

-2π2[h2a*2U11 + ... + 2 h k a* b* U12] 

 

U11 U22 U33 U23 U13 U12 

As(1) 13(1)  6(1) 4(1)  0(1) 0(1)  0(1) 

C(1) 14(1)  10(1) 8(1)  -1(1) 0(1)  -2(1) 

C(2) 11(1)  10(1) 9(1)  0(1) 1(1)  -1(1) 

O(1) 27(1)  11(1) 8(1)  -3(1) 3(1)  0(1) 

O(2) 26(1)  5(1) 8(1)  1(1) -2(1)  0(1) 

O(3) 14(1)  16(1) 12(1)  6(1) -3(1)  -3(1) 

O(4) 30(1)  9(1) 8(1)  0(1) 2(1)  1(1) 

O(5) 41(1)  12(1) 10(1)  2(1) 5(1)  -3(1) 

 

Table 5.6 - Hydrogen coordinates ( × 104) and isotropic displacement 
parameters (Å2 × 103) for arsonoacetic acid 

 

x  y  z  U(eq) 

H(11) 5229 1922 7089 13 

H(12) 6911 461 7548 13 

H(1) 9690(130) 1170(120) 5000(50) 160(30) 

H(2) 11640(80) 2000(90) 7750(60) 120(20) 

H(3) 6480(50) 4450(50) 9720(30) 45(10) 

 

Table 5.7 - Torsion angles (°) for arsonoacetic acid 

O(2)-As(1)-C(1)-C(2) -66.78(13) 

O(1)-As(1)-C(1)-C(2) 173.05(11) 

O(3)-As(1)-C(1)-C(2) 53.90(13) 

As(1)-C(1)-C(2)-O(5) -134.78(16) 

As(1)-C(1)-C(2)-O(4) 45.96(18) 
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Table 5.8 - Hydrogen bonds for arsonoacetic acid (Å and °) 

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) 

 O(2)-H(2)···O(5)i 0.84 1.82 2.612(2) 156.1 

 O(1)-H(1)···O(3)ii 0.84 1.79 2.6050(18) 162.8 

 O(4)-H(4)···O(3)iii 0.84 1.71 2.544(2) 170.6 

Symmetry transformations used to generate equivalent atoms:  

(i): -x+ 3/2, -y, z-1/2     

(ii): -x+2, y-1/2, -z+3/2     

(iii): -x+3/2, -y+1, z+1/2 
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5.2 Cyclohexaarsenoacetic acid – As6(CH2COOH)6.6C5NH5  

 

Table 5.9 - Complete crystal data and structure refinement for arsenoacetic 
acid 

Empirical formula  C42H48As6N6O12 

Formula weight  1278.38 

Temperature  90(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.14560(1) Å  α = 113.9480(1)° 

 

b = 11.62330(1) Å  β = 92.3780(1)° 

 

c = 12.4298(2) Å  γ = 106.7160(1)° 

Volume 1261.85(3) Å3 

Z 1 

Density (calculated) 1.682 Mg/m3 

Absorption coefficient 3.989 mm-1 

F(000) 636 

Crystal size 0.29 × 0.20 × 0.17 mm3 

Theta range for data collection 1.82 to 28.10° 

Index ranges -13<=h<=13, -15<=k<=15, -16<=l<=16 

Reflections collected 37809 

Independent reflections 6128 [R(int) = 0.0384] 

Completeness to theta = 28.10° 99.30 % 

Max. and min. transmission 0.5504 and 0.3908 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6128 / 0 / 310 

Goodness-of-fit on F2 1.035 

Final R indices [I>2σ(I)] R1 = 0.0221, wR2 = 0.0441 

R indices (all data) R1 = 0.0322, wR2 = 0.0466 

Largest diff. peak and hole 0.449 and -0.304 e Å-3 
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Table 5.10 - Atomic coordinates ( × 104) and equivalent isotropic displacement 
parameters (Å2 × 103) for arsenoacetic acid. U(eq) is defined as one third of 

the trace of the orthogonalized Uij tensor 

 
x y z U(eq) 

As(1) 7926(1) 3810(1) 4116(1) 13(1) 

As(2) 8634(1) 5759(1) 6080(1) 13(1) 

As(3) 10345(1) 4886(1) 6652(1) 13(1) 

O(11) 6467(1) 6360(1) 4657(1) 22(1) 

O(12) 6797(2) 5628(1) 2750(1) 20(1) 

O(21) 6292(1) 2708(1) 5930(1) 22(1) 

O(22) 7529(2) 3848(1) 7801(1) 22(1) 

O(31) 10323(2) 8141(1) 8806(1) 24(1) 

O(32) 12530(2) 8160(1) 8640(1) 23(1) 

N(4) 2690(2) -1439(2) 2383(1) 20(1) 

N(5) 7816(2) -1863(2) 3265(2) 21(1) 

N(6) 6818(2) 9277(2) 10781(2) 23(1) 

C(11) 6204(2) 4064(2) 3549(2) 16(1) 

C(12) 6484(2) 5465(2) 3714(2) 16(1) 

C(21) 7065(2) 5093(2) 6826(2) 18(1) 

C(22) 6905(2) 3770(2) 6794(2) 17(1) 

C(31) 10864(2) 6150(2) 8394(2) 19(1) 

C(32) 11190(2) 7580(2) 8640(2) 20(1) 

C(41) 3591(2) -350(2) 3288(2) 21(1) 

C(42) 3809(2) 932(2) 3419(2) 22(1) 

C(43) 3066(2) 1103(2) 2572(2) 23(1) 

C(44) 2131(2) -8(2) 1625(2) 22(1) 

C(45) 1981(2) -1251(2) 1572(2) 22(1) 

C(51) 9179(2) -1318(2) 3308(2) 24(1) 

C(52) 9812(2) 33(2) 3661(2) 27(1) 

C(53) 9003(2) 845(2) 3977(2) 27(1) 

C(54) 7599(2) 299(2) 3947(2) 28(1) 

C(55) 7044(2) -1062(2) 3592(2) 26(1) 

C(61) 5478(2) 8496(2) 10483(2) 32(1) 
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C(62) 5080(3) 7123(2) 10005(2) 37(1) 

C(63) 6090(3) 6533(2) 9831(2) 33(1) 

C(64) 7477(2) 7327(2) 10141(2) 30(1) 

C(65) 7794(2) 8694(2) 10610(2) 25(1) 

 

Table 5.11 - Complete bond lengths (Å) for arsenoacetic acid 

As(1)-C(11)  1.9994(19) C(31)-H(31A)  0.99 

As(1)-As(2)  2.4566(3) C(31)-H(31B)  0.99 

As(1)-As(3)i  2.4628(3) C(41)-C(42)  1.381(3) 

As(2)-C(21)  1.9969(18) C(41)-H(41)  0.95 

As(2)-As(3)  2.4589(3) C(42)-C(43)  1.381(3) 

As(3)-C(31)  2.0006(18) C(42)-H(42)  0.95 

As(3)-As(1)i  2.4628(3) C(43)-C(44)  1.386(3) 

O(11)-C(12)  1.216(2) C(43)-H(43)  0.95 

O(12)-C(12)  1.324(2) C(44)-C(45)  1.382(3) 

O(12)-H(1)  0.85(3) C(44)-H(44)  0.95 

O(21)-C(22)  1.220(2) C(45)-H(45)  0.95 

O(22)-C(22)  1.336(2) C(51)-C(52)  1.381(3) 

O(22)-H(2)  0.82(3) C(51)-H(51)  0.95 

O(31)-C(32)  1.215(2) C(52)-C(53)  1.375(3) 

O(32)-C(32)  1.332(2) C(52)-H(52)  0.95 

O(32)-H(3)  0.89(3) C(53)-C(54)  1.375(3) 

N(4)-C(45)  1.338(3) C(53)-H(53)  0.95 

N(4)-C(41)  1.341(2) C(54)-C(55)  1.384(3) 

N(5)-C(51)  1.334(3) C(54)-H(54)  0.95 

N(5)-C(55)  1.334(3) C(55)-H(55)  0.95 

N(6)-C(65)  1.331(3) C(61)-C(62)  1.380(3) 

N(6)-C(61)  1.335(3) C(61)-H(61)  0.95 

C(11)-C(12)  1.494(3) C(62)-C(63)  1.367(3) 

C(11)-H(11A)  0.99 C(62)-H(62)  0.95 

C(11)-H(11B)  0.99 C(63)-C(64)  1.378(3) 

C(21)-C(22)  1.483(3) C(63)-H(63)  0.95 
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C(21)-H(21A)  0.99 C(64)-C(65)  1.381(3) 

C(21)-H(21B)  0.99 C(64)-H(64)  0.95 

C(31)-C(32)  1.493(3) C(65)-H(65)  0.95 

Symmetry transformations used to generate equivalent atoms:  

(i): -x+2, -y+1, -z+1 

 

Table 5.12 - Complete bond angles (°) for arsenoacetic acid 

C(11)-As(1)-As(2) 97.92(5) C(42)-C(41)-H(41) 118.3 

C(11)-As(1)-As(3)i 99.38(5) C(43)-C(42)-C(41) 118.37(18) 

As(2)-As(1)-As(3)i 88.753(8) C(43)-C(42)-H(42) 120.8 

C(21)-As(2)-As(1) 97.19(6) C(41)-C(42)-H(42) 120.8 

C(21)-As(2)-As(3) 99.52(6) C(42)-C(43)-C(44) 119.37(19) 

As(1)-As(2)-As(3) 89.228(9) C(42)-C(43)-H(43) 120.3 

C(31)-As(3)-As(2) 97.93(6) C(44)-C(43)-H(43) 120.3 

C(31)-As(3)-As(1)i 99.19(6) C(45)-C(44)-C(43) 118.05(19) 

As(2)-As(3)-As(1)i 87.856(9) C(45)-C(44)-H(44) 121 

C(12)-O(12)-H(1) 111.9(18) C(43)-C(44)-H(44) 121 

C(22)-O(22)-H(2) 110.0(17) N(4)-C(45)-C(44) 123.59(18) 

C(32)-O(32)-H(3) 112.1(19) N(4)-C(45)-H(45) 118.2 

C(45)-N(4)-C(41) 117.24(17) C(44)-C(45)-H(45) 118.2 

C(51)-N(5)-C(55) 118.37(17) N(5)-C(51)-C(52) 122.5(2) 

C(65)-N(6)-C(61) 118.06(19) N(5)-C(51)-H(51) 118.7 

C(12)-C(11)-As(1) 111.55(12) C(52)-C(51)-H(51) 118.7 

C(12)-C(11)-H(11A) 109.3 C(53)-C(52)-C(51) 118.6(2) 

As(1)-C(11)-H(11A) 109.3 C(53)-C(52)-H(52) 120.7 

C(12)-C(11)-H(11B) 109.3 C(51)-C(52)-H(52) 120.7 

As(1)-C(11)-H(11B) 109.3 C(54)-C(53)-C(52) 119.42(19) 

H(11A)-C(11)-H(11B) 108 C(54)-C(53)-H(53) 120.3 

O(11)-C(12)-O(12) 124.27(17) C(52)-C(53)-H(53) 120.3 

O(11)-C(12)-C(11) 122.59(17) C(53)-C(54)-C(55) 118.5(2) 

O(12)-C(12)-C(11) 113.10(16) C(53)-C(54)-H(54) 120.7 

C(22)-C(21)-As(2) 114.77(13) C(55)-C(54)-H(54) 120.7 
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C(22)-C(21)-H(21A) 108.6 N(5)-C(55)-C(54) 122.5(2) 

As(2)-C(21)-H(21A) 108.6 N(5)-C(55)-H(55) 118.7 

C(22)-C(21)-H(21B) 108.6 C(54)-C(55)-H(55) 118.7 

As(2)-C(21)-H(21B) 108.6 N(6)-C(61)-C(62) 122.5(2) 

H(21A)-C(21)-H(21B) 107.6 N(6)-C(61)-H(61) 118.8 

O(21)-C(22)-O(22) 122.75(18) C(62)-C(61)-H(61) 118.8 

O(21)-C(22)-C(21) 123.96(18) C(63)-C(62)-C(61) 119.1(2) 

O(22)-C(22)-C(21) 113.27(16) C(63)-C(62)-H(62) 120.5 

C(32)-C(31)-As(3) 113.86(13) C(61)-C(62)-H(62) 120.5 

C(32)-C(31)-H(31A) 108.8 C(62)-C(63)-C(64) 119.1(2) 

As(3)-C(31)-H(31A) 108.8 C(62)-C(63)-H(63) 120.5 

C(32)-C(31)-H(31B) 108.8 C(64)-C(63)-H(63) 120.5 

As(3)-C(31)-H(31B) 108.8 C(63)-C(64)-C(65) 118.5(2) 

H(31A)-C(31)-H(31B) 107.7 C(63)-C(64)-H(64) 120.7 

O(31)-C(32)-O(32) 124.10(18) C(65)-C(64)-H(64) 120.7 

O(31)-C(32)-C(31) 123.54(18) N(6)-C(65)-C(64) 122.8(2) 

O(32)-C(32)-C(31) 112.35(18) N(6)-C(65)-H(65) 118.6 

N(4)-C(41)-C(42) 123.38(19) C(64)-C(65)-H(65) 118.6 

N(4)-C(41)-H(41) 118.3 

  Symmetry transformations used to generate equivalent atoms:  

(i): -x+2, -y+1, -z+1 

 

Table 5.13 - Anisotropic displacement parameters (Å2 × 103) for arsenoacetic 
acid. The anisotropic displacement factor exponent takes the form: 

-2π2[h2a*2U11 + ... + 2 h k a* b* U12] 

 
U11 U22 U33 U23 U13 U12 

As(1) 12(1)  11(1) 16(1)  5(1) 2(1)  4(1) 

As(2) 12(1)  11(1) 16(1)  5(1) 2(1)  4(1) 

As(3) 12(1)  12(1) 15(1)  5(1) 2(1)  3(1) 

O(11) 23(1)  18(1) 24(1)  7(1) 7(1)  10(1) 

O(12) 25(1)  16(1) 21(1)  10(1) 4(1)  6(1) 

O(21) 20(1)  18(1) 23(1)  7(1) 1(1)  3(1) 
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O(22) 29(1)  16(1) 19(1)  8(1) 1(1)  4(1) 

O(31) 22(1)  21(1) 24(1)  4(1) 4(1)  8(1) 

O(32) 17(1)  19(1) 26(1)  6(1) 4(1)  2(1) 

N(4) 22(1)  16(1) 18(1)  6(1) 6(1)  4(1) 

N(5) 27(1)  19(1) 22(1)  11(1) 8(1)  8(1) 

N(6) 21(1)  23(1) 21(1)  7(1) 3(1)  3(1) 

C(11) 11(1)  17(1) 20(1)  8(1) 1(1)  4(1) 

C(12) 8(1)  19(1) 22(1)  9(1) 1(1)  5(1) 

C(21) 14(1)  20(1) 22(1)  10(1) 7(1)  7(1) 

C(22) 12(1)  20(1) 20(1)  8(1) 7(1)  4(1) 

C(31) 20(1)  21(1) 13(1)  7(1) 2(1)  4(1) 

C(32) 20(1)  21(1) 11(1)  3(1) 1(1)  3(1) 

C(41) 18(1)  22(1) 21(1)  9(1) 1(1)  7(1) 

C(42) 19(1)  17(1) 24(1)  5(1) 1(1)  3(1) 

C(43) 22(1)  18(1) 29(1)  12(1) 7(1)  6(1) 

C(44) 21(1)  26(1) 20(1)  13(1) 3(1)  6(1) 

C(45) 22(1)  22(1) 14(1)  6(1) 2(1)  1(1) 

C(51) 25(1)  27(1) 24(1)  12(1) 9(1)  14(1) 

C(52) 22(1)  28(1) 28(1)  12(1) 9(1)  4(1) 

C(53) 33(1)  17(1) 29(1)  12(1) 7(1)  4(1) 

C(54) 31(1)  22(1) 38(1)  14(1) 13(1)  15(1) 

C(55) 22(1)  25(1) 35(1)  16(1) 11(1)  9(1) 

C(61) 19(1)  33(1) 42(1)  17(1) 6(1)  5(1) 

C(62) 23(1)  32(1) 43(1)  13(1) 1(1)  -5(1) 

C(63) 42(2)  22(1) 29(1)  10(1) 10(1)  3(1) 

C(64) 33(1)  34(1) 30(1)  17(1) 14(1)  16(1) 

C(65) 18(1)  30(1) 23(1)  12(1) 2(1)  2(1) 
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Table 5.14 – Hydrogen coordinates ( × 104) and isotropic displacement 
parameters (Å2 × 103) for arsenoacetic acid 

 

x  y  z  U(eq) 

H(1) 7120(30) 6450(30) 2900(20) 48(8) 

H(2) 7450(30) 3100(30) 7730(20) 37(7) 

H(3) 12710(30) 9010(30) 8770(20) 57(9) 

H(11A) 5857 3443 2691 19 

H(11B) 5465 3845 3999 19 

H(21A) 7214 5752 7671 22 

H(21B) 6181 5040 6411 22 

H(31A) 10082 5905 8796 23 

H(31B) 11690 6046 8747 23 

H(41) 4106 -467 3869 25 

H(42) 4455 1679 4076 27 

H(43) 3194 1972 2638 27 

H(44) 1608 83 1030 26 

H(45) 1340 -2013 924 26 

H(51) 9735 -1881 3087 29 

H(52) 10786 393 3685 32 

H(53) 9411 1776 4212 32 

H(54) 7023 843 4166 34 

H(55) 6077 -1442 3582 31 

H(61) 4773 8902 10604 38 

H(62) 4118 6595 9799 45 

H(63) 5840 5589 9502 40 

H(64) 8199 6942 10033 36 

H(65) 8750 9242 10821 30 
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Table 5.15 - Torsion angles (°) for arsenoacetic acid 

C(11)-As(1)-As(2)-C(21) 69.07(8) 

As(3)i-As(1)-As(2)-C(21) 168.37(6) 

C(11)-As(1)-As(2)-As(3) 168.57(5) 

As(3)i-As(1)-As(2)-As(3) -92.128(8) 

C(21)-As(2)-As(3)-C(31) -72.63(8) 

As(1)-As(2)-As(3)-C(31) -169.79(6) 

C(21)-As(2)-As(3)-As(1)i -171.62(6) 

As(1)-As(2)-As(3)-As(1)i 91.219(8) 

As(2)-As(1)-C(11)-C(12) 48.96(13) 

As(3)i-As(1)-C(11)-C(12) -41.08(14) 

As(1)-C(11)-C(12)-O(11) -83.9(2) 

As(1)-C(11)-C(12)-O(12) 93.87(16) 

As(1)-As(2)-C(21)-C(22) 54.90(14) 

As(3)-As(2)-C(21)-C(22) -35.53(14) 

As(2)-C(21)-C(22)-O(21) -82.4(2) 

As(2)-C(21)-C(22)-O(22) 96.22(17) 

As(2)-As(3)-C(31)-C(32) -48.18(15) 

As(1)i-As(3)-C(31)-C(32) 40.92(15) 

As(3)-C(31)-C(32)-O(31) 91.5(2) 

As(3)-C(31)-C(32)-O(32) -87.56(17) 

C(45)-N(4)-C(41)-C(42) 0.3(3) 

N(4)-C(41)-C(42)-C(43) -0.3(3) 

C(41)-C(42)-C(43)-C(44) 0.1(3) 

C(42)-C(43)-C(44)-C(45) 0.1(3) 

C(41)-N(4)-C(45)-C(44) -0.1(3) 

C(43)-C(44)-C(45)-N(4) -0.1(3) 

C(55)-N(5)-C(51)-C(52) -1.0(3) 

N(5)-C(51)-C(52)-C(53) -0.2(3) 

C(51)-C(52)-C(53)-C(54) 0.8(3) 

C(52)-C(53)-C(54)-C(55) -0.4(3) 

C(51)-N(5)-C(55)-C(54) 1.5(3) 
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C(53)-C(54)-C(55)-N(5) -0.8(3) 

C(65)-N(6)-C(61)-C(62) -0.3(3) 

N(6)-C(61)-C(62)-C(63) 0.2(4) 

C(61)-C(62)-C(63)-C(64) 0.1(4) 

C(62)-C(63)-C(64)-C(65) -0.4(3) 

C(61)-N(6)-C(65)-C(64) 0.0(3) 

C(63)-C(64)-C(65)-N(6) 0.3(3) 

 Symmetry transformations used to generate equivalent atoms:  

 (i): -x+2, -y+1, -z+1 

 

Table 5.16 - Hydrogen bonds for arsenoacetic acid (Å and °) 

D-H···A d(D-H) d(H···A) d(D···A) <(DHA) 

 O(12)-H(1)···N(5)ii 0.85(3) 1.74(3) 2.585(2) 178(3) 

 O(22)-H(2)···N(4)iii 0.82(3) 1.84(3) 2.658(2) 178(3) 

 O(32)-H(3)···N(6)iv 0.89(3) 1.74(3) 2.630(2) 172(3) 

Symmetry transformations used to generate equivalent atoms:  

(ii): x, y+1, z  

(iii): -x+1, -y, -z+1  

(iv): -x+2, -y+2, -z+2  
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5.3 β-Monoclinic S8 (β-S8) 

 

Table 5.17 - Crystal data and structure refinement for β-S8 

Empirical formula  S8 

Formula weight  256.48 

Temperature  90(2) K 

Wavelength  0.71073 Å 

Crystal system  P21 

Space group  Monoclinic 

Unit cell dimensions a = 10.67360(10) Å 

 b = 10.70140(10) Å β = 95.7110(10)° 

 c = 10.81390(10) Å 

Volume 1229.06(2) Å3 

Z 6 

Density (calculated) 2.079 Mg/m3 

Absorption coefficient 2.078 mm-1 

F(000) 768 

Crystal size 0.30 x 0.30 x 0.27 mm3 

Theta range for data collection 1.89 to 27.86° 

Index ranges -13<=h<=14, -14<=k<=12, -13<=l<=14 

Reflections collected 15373 

Independent reflections 5429 [R(int) = 0.0196] 

Completeness to theta = 27.86° 99.4 %  

Max. and min. transmission 0.6039 and 0.5745 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5429 / 1 / 217 

Goodness-of-fit on F2 1.090 

Final R indices [I>2σ(I)] R1 = 0.0208, wR2 = 0.0511 

R indices (all data) R1 = 0.0213, wR2 = 0.0514 

Largest diff. peak and hole 0.357 and -0.270 e Å-3 
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Table 5.18 - Atomic coordinates ( × 104) and equivalent isotropic displacement 
parameters (Å2 × 103) for β-S8. U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor 

 x y z U(eq) 

S(11) 452(1) 1002(1) 6751(1) 19(1) 

S(12) 2187(1) 986(1) 7761(1) 19(1) 

S(13) 2418(1) 2718(1) 8574(1) 21(1) 

S(14) 3540(1) 3761(1) 7533(1) 21(1) 

S(15) 2377(1) 4865(1) 6361(1) 21(1) 

S(16) 2151(1) 4000(1) 4658(1) 17(1) 

S(17) 429(1) 3118(1) 4508(1) 17(1) 

S(18) 723(1) 1263(1) 4915(1) 17(1) 

S(21) 7387(1) 2677(1) 6181(1) 21(1) 

S(22) 7094(1) 3535(1) 4480(1) 17(1) 

S(23) 5390(1) 4452(1) 4398(1) 17(1) 

S(24) 5726(1) 6304(1) 4795(1) 17(1) 

S(25) 5533(1) 6562(1) 6646(1) 19(1) 

S(26) 7304(1) 6564(1) 7593(1) 18(1) 

S(27) 7537(1) 4833(1) 8388(1) 22(1) 

S(28) 8606(1) 3766(1) 7310(1) 21(1) 

S(31) 8257(1) -25(1) 8402(1) 21(1) 

S(32) 6484(1) -476(1) 8824(1) 19(1) 

S(33) 5464(1) 1152(1) 8758(1) 24(1) 

S(34) 5444(1) 1749(1) 10558(1) 24(1) 

S(35) 6737(1) 3154(1) 10885(1) 24(1) 

S(36) 8371(1) 2424(1) 11763(1) 24(1) 

S(37) 9571(1) 2048(1) 10439(1) 25(1) 

S(38) 9419(1) 175(1) 10021(1) 24(1) 

 

  



Appendix – Complete X-Ray Crystal Data  69 

 

 

Table 5.19 - Bond lengths (Å) for β-S8 

S(11)-S(18)  2.0530(10) S(24)-S(25)  2.0506(10) 

S(11)-S(12)  2.0547(10) S(25)-S(26)  2.0587(10) 

S(12)-S(13)  2.0557(11) S(26)-S(27)  2.0465(11) 

S(13)-S(14)  2.0538(11) S(27)-S(28)  2.0560(11) 

S(14)-S(15)  2.0563(11) S(31)-S(32)  2.0478(10) 

S(15)-S(16)  2.0541(10) S(31)-S(38)  2.0533(10) 

S(16)-S(17)  2.0581(10) S(32)-S(33)  2.0515(11) 

S(17)-S(18)  2.0508(11) S(33)-S(34)  2.0508(11) 

S(21)-S(22)  2.0520(10) S(34)-S(35)  2.0476(12) 

S(21)-S(28)  2.0552(10) S(35)-S(36)  2.0560(11) 

S(22)-S(23)  2.0607(10) S(36)-S(37)  2.0536(11) 

S(23)-S(24)  2.0521(11) S(37)-S(38)  2.0578(11) 

 

 

Table 5.20 - Bond angles (°) for β-S8 

S(18)-S(11)-S(12) 108.00(4) S(24)-S(25)-S(26) 108.01(4) 

S(11)-S(12)-S(13) 106.48(5) S(27)-S(26)-S(25) 105.99(5) 

S(14)-S(13)-S(12) 107.91(4) S(26)-S(27)-S(28) 108.40(4) 

S(13)-S(14)-S(15) 107.51(4) S(21)-S(28)-S(27) 107.33(4) 

S(16)-S(15)-S(14) 107.66(4) S(32)-S(31)-S(38) 109.12(4) 

S(15)-S(16)-S(17) 107.56(4) S(31)-S(32)-S(33) 106.93(5) 

S(18)-S(17)-S(16) 108.09(4) S(34)-S(33)-S(32) 106.68(5) 

S(17)-S(18)-S(11) 107.83(4) S(35)-S(34)-S(33) 108.81(5) 

S(22)-S(21)-S(28) 108.04(5) S(34)-S(35)-S(36) 109.10(5) 

S(21)-S(22)-S(23) 107.88(4) S(37)-S(36)-S(35) 108.18(5) 

S(24)-S(23)-S(22) 108.42(4) S(36)-S(37)-S(38) 107.63(5) 

S(25)-S(24)-S(23) 107.58(4) S(31)-S(38)-S(37) 108.46(5) 
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Table 5.21 - Anisotropic displacement parameters (Å2 × 103) for β-S8. The 
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 

2 h k a* b* U12 ] 

 U11 U22 U33 U23 U13 U12 

S(11) 17(1)  19(1) 23(1)  1(1) 5(1)  -4(1) 

S(12) 22(1)  15(1) 20(1)  1(1) 1(1)  1(1) 

S(13) 28(1)  21(1) 15(1)  -4(1) 1(1)  1(1) 

S(14) 20(1)  20(1) 23(1)  -2(1) -5(1)  -3(1) 

S(15) 25(1)  12(1) 24(1)  -3(1) -2(1)  -1(1) 

S(16) 16(1)  16(1) 18(1)  2(1) 2(1)  -1(1) 

S(17) 14(1)  17(1) 21(1)  0(1) -2(1)  1(1) 

S(18) 19(1)  14(1) 19(1)  -3(1) 1(1)  -2(1) 

S(21) 24(1)  14(1) 24(1)  3(1) -6(1)  -2(1) 

S(22) 16(1)  16(1) 18(1)  -2(1) 1(1)  2(1) 

S(23) 13(1)  17(1) 19(1)  0(1) -2(1)  -1(1) 

S(24) 20(1)  15(1) 17(1)  3(1) 2(1)  2(1) 

S(25) 18(1)  22(1) 19(1)  -2(1) 3(1)  5(1) 

S(26) 20(1)  18(1) 18(1)  -3(1) 2(1)  -1(1) 

S(27) 26(1)  26(1) 14(1)  4(1) -1(1)  -3(1) 

S(28) 20(1)  18(1) 24(1)  1(1) -7(1)  3(1) 

S(31) 19(1)  26(1) 20(1)  -6(1) 6(1)  -2(1) 

S(32) 16(1)  18(1) 22(1)  -2(1) 1(1)  -2(1) 

S(33) 21(1)  28(1) 23(1)  -5(1) -4(1)  6(1) 

S(34) 22(1)  28(1) 25(1)  -4(1) 7(1)  1(1) 

S(35) 33(1)  16(1) 22(1)  -1(1) -1(1)  4(1) 

S(36) 31(1)  23(1) 16(1)  -2(1) -4(1)  -1(1) 

S(37) 23(1)  23(1) 28(1)  -2(1) 0(1)  -9(1) 

S(38) 17(1)  22(1) 31(1)  -3(1) -4(1)  1(1) 
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Table 5.22 - Torsion angles (°) for β-S8 

S(18)-S(11)-S(12)-S(13) 101.42(5) 

S(11)-S(12)-S(13)-S(14) -100.14(5) 

S(12)-S(13)-S(14)-S(15) 97.75(5) 

S(13)-S(14)-S(15)-S(16) -98.38(5) 

S(14)-S(15)-S(16)-S(17) 101.01(5) 

S(15)-S(16)-S(17)-S(18) -99.41(5) 

S(16)-S(17)-S(18)-S(11) 96.46(5) 

S(12)-S(11)-S(18)-S(17) -98.78(5) 

S(28)-S(21)-S(22)-S(23) -100.45(5) 

S(21)-S(22)-S(23)-S(24) 98.89(5) 

S(22)-S(23)-S(24)-S(25) -96.37(5) 

S(23)-S(24)-S(25)-S(26) 99.16(5) 

S(24)-S(25)-S(26)-S(27) -101.56(5) 

S(25)-S(26)-S(27)-S(28) 100.37(5) 

S(22)-S(21)-S(28)-S(27) 97.84(5) 

S(26)-S(27)-S(28)-S(21) -98.02(5) 

S(38)-S(31)-S(32)-S(33) 97.61(5) 

S(31)-S(32)-S(33)-S(34) -99.53(5) 

S(32)-S(33)-S(34)-S(35) 101.34(5) 

S(33)-S(34)-S(35)-S(36) -98.08(5) 

S(34)-S(35)-S(36)-S(37) 95.76(5) 

S(35)-S(36)-S(37)-S(38) -98.21(5) 

S(32)-S(31)-S(38)-S(37) -98.43(5) 

S(36)-S(37)-S(38)-S(31) 99.75(5) 
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